
Getting to Grips with LATEX

Andrew Roberts



ii



Chapter 1

Absolute beginners

This chapter is aimed at getting familar with the bare bones on LATEX. We
will begin with creating the actual source LATEX �le, and then take you through
how to feed this through the LATEX system to produce quality output, such as
postscript or PDF.

1.1 The LATEX source

The �rst thing you need to be aware of is that LATEX uses a markup language
in order to describe document structure and presentation. What LATEX does
is to convert your source text, combined with the markup, into a high quality
document. For the purpose of analogy, web pages work in a similar way: the
HTML is used to describe the document, but it is your browser that presents it
in its full glory | with di�erent colours, fonts, sizes, etc.

1.1.1 Hello World!

Ok, so let us begin by deciding what we will actually get LATEX to produce. As
I said, we will produce the absolute bare minimum that is needed in order to
get some output, and so I think the well known 'Hello World! approach will be
suitable here.

1. Open your favorite text-editor. If you use vim or emacs, they also have
syntax highlighting that will help to write your �les.

2. Reproduce the following text in your editor. This is the LATEX source.

% hello.tex - Our first LaTeX example!

\documentclass{article}

\begin{document}

Hello World!

\end{document}

1



2 CHAPTER 1. ABSOLUTE BEGINNERS

3. Save your �le as 'hello.tex'. (Without the quotes!)

1.1.2 What does it all mean?

% hello.tex - Our first LaTeX example! The �rst line is a comment.
This is because it begins with the percent symbol (%), which when LATEX
sees it simply ignores the rest of the line. Comments are useful for hu-
mans to annotate parts of the source �le. For example, you could put
information about the author and the date, or whatever you wish.

ndocumentclassfarticleg This line tells LATEX to use the article document
class. A document class �le de�nes the formatting, which in this case is
a generic article format. The handy thing is that if you want change the
appearance of your document, substitute article for another class �le that
exists.

nbeginfdocumentg An educated guess would tell you that this command alerts
LATEX that content of the document is about to commence. Anything
above this command are known generally to belong in the preamble.

Hello World! This was the only actual line containing real content | the
text that we wanted displayed on the page.

nendfdocumentg Once again, this is not too di�cult to understand. It tells
LATEX that the document source is complete.

You should also notice that each of the LATEX commands begin with a back-
slash (n). This is LATEX's way of knowing that whenever it sees a backslash,
to expect some commands. Comments are not classed as a command, since all
they tell LATEX is to ignore the line. Comments never a�ect the output of the
document.

Note, if you want to use the backslash or percent symbols within your text,
you need to actually issue a command to tell LATEX to draw the desired symbols,
otherwise it will expect a command or a comment! The commands are:

Symbol Command
% n%
n ntextbackslash

1.2 Generating the document

It is clearly not going to be the most exciting document you have ever seen,
but we want to see it nontheless. I am assuming that you are at a command
prompt, already in the directory where hello.tex is stored.

1. Type the command: latex hello (the .tex extension is not required,
although you can include it if you wish.)

2. Various bits of info about latex and its progress will be displayed. If all
went well, the last two lines displayed in the console will be:

Output written on hello.dvi (1 page, 232 bytes).

Transcript written on hello.log.



1.3. VIEWING THE DOCUMENT 3

This means that your source �le has been processed and the resulting doc-
ument is called hello.dvi, which takes up 1 page and 232 bytes of space.

Note, in this instance, due to the simplicity of the �le, you only need to run
the LATEX command once. However, if you begin to create complex documents,
including bibliographies and cross-references, etc., LATEX needs to be executed
multiple times to resolve the references. But this will be discussed in the future
when it comes up.

1.3 Viewing the document

LATEX has now done its job, so we can view the output. The default format
is DVI (device independent), of which viewers exist freely for most platforms.
However, the chances are that you would prefer to have a postscript �le or PDF.
Fortunately, there exist tools that can convert DVI to PS (and PDF) easily.

1.3.1 Converting to Postscript

Type the command: dvips hello.dvi -o hello.ps

dvips is the utility that actually performs the conversion. The �rst argument
is the DVI �le to be converted. The -o argument says that you want the output
to be saved as a �le. And the argument immediately after is the name you wish
to call it. You could give it any name, but it makes sense to stick with hello, as
well as giving it an informative .ps extension.

1.3.2 Converting to PDF

There are two easy routes to get a PDF:

1. Type the command: dvipdf hello.dvi hello.pdf (Note that there is no
-o with this command, because although the utilities look almost identical,
they have slighly di�ering syntax)

2. If you already have a postscript version, then type: ps2pdf hello.ps

hello.pdf

Now it is simply a matter of using your preferred PS or PDF viewer to see
the output. What you should see at the top left of the page are the words Hello
World! and at the bottom is the current page number. All in a standard times
font.

1.4 Summary

Ok, we've created possibly the simpliest possible document that LATEX will
produce (except for a blank page of course!) which is why it is not much to
look at. However, now we have seen the basics, and how to actually use the
LATEX software, we can progress towards the more typical documents that you
are likely to produce.



4 CHAPTER 1. ABSOLUTE BEGINNERS



Chapter 2

Document structure

This chapter progresses signi�cantly from the previous | very simplistic |
chapter. The goal is to produce a fairly basic article, of similar style to what a
research paper would resemble. To achieve this e�ciently, we will focuse largely
on document structure.

LATEX practically forces you to declare structure within your documents.
This is a good thing though. Because once LATEX understands how you want
your document organised, it will take care of all the tedious business of the
layout and presentation for you. The separation of content and layout allows
you to concentrate on the job at hand, i.e., communicating your ideas.

2.1 Preamble

If you recall from the previous tutorial, the preamble the everything from the
start of the LATEX source �le until the nbeginfdocumentg command. It normally
contains commands that a�ect the entire document.

% simple.tex - A simple article to illustrate document structure.

\documentclass{article}

\usepackage{times}

\begin{document}

The �rst line is a comment (as denoted by the % sign). The ndocumentclass
command takes an argument, which in this case is article, because that's the
type of document we want to produce. Other default classes that exist are book,
report, letter, etc. It is also possible to create your own, as is often done by
journal publishers, who simply provide you with their own class �le, which tells
LATEX how to format your content. But we'll be happy with the standard article
class for now!

nusepackage is an important command that tells Latex to utilise some
external macros. In this instance, I speci�ed times which means LATEX will
use the Postscript Times type 1 fonts, which look nicer :) And �nally, the
nbeginfdocumentg. This strictly isn't part of the preamble, but I'll put it here

5



6 CHAPTER 2. DOCUMENT STRUCTURE

anyway, as it implies the end of the preamble by nature of stating that the
document is now starting.

2.2 Top Matter

At the beginning of most documents will be information about the document
itself, such as the title and date, and also information about the authors, such
as name, address, email etc. All of this type of information within Latex is
collectively referred to as top matter. Although never explicitly speci�ed, that
is, there is no such ntopmatter command, you are likely to encouter the term
within Latex documentation.

An example:

\title{How to Structure a \LaTeX{} Document}

\author{Andrew Roberts\\

School of Computing,\\

University of Leeds,\\

Leeds,\\

United Kingdom,\\

LS2 9JT\\

\texttt{andyr@comp.leeds.ac.uk}}

\date{\today}

\maketitle

The ntitle command is fairly obivous. Simply put the title you want be-
tween the curly braces. nauthor would also seem easy, until you notice that I've
crammed in all sorts of other information along with the name. This is merely a
common, albeit, ungraceful hack, due to the default article class being a tad ba-
sic. If you are provided with a class �le from a publisher, or if you use the AMS
article class (amsart), then you have a more logical approach to entering author
information. In the meantime, you can see how the new line command (nn) has
been used so that I could produce my address. My email address is at the end,
and the ntexttt command formats the email address using a monospaced font.
The ndate command takes an argument to signify the date the document was
written. I've used a built-in command called ntoday which, when processed by
LATEX, will be replaced with the current date. But you are free to put whatever
you want as a date, in no set order. If braces are left empty, then the date is
then omitted. Without nmaketitle, the top matter would not appear in the
document. So it is needed to commit your article attributes to paper.

2.3 Abstract

As most research papers have an abstract, then there is a prede�ned command
for telling LATEX which part of the content makes up the abstract. This should
appear in its logical order, therefore, after the top matter, but before the main
sections of the body.

\begin{abstract}

Your abstract goes here...



2.4. SECTIONING COMMANDS 7

Command Level
npartfpart g -1
nchapterfchapter g 0
nsectionfsection g 1
nsubsectionfsubsection g 2
nsubsubsectionfsubsubsection g 3
nparagraphfparagraph g 4
nsubparagraphfsubparagraph g 5

Table 2.1: Possible section commands.??

...

\end{abstract}

2.4 Sectioning commands

The commands for inserting sections are fairly intuitive. Of course, certain
commands are appropriate to di�erent document classes. For example, a book
has chapters but a article doesn't. Here is an edited version of some of the
structure commonds in use.

\section{Introduction}

This section's content...

\section{Structure}

This section's content...

\subsection{Top Matter}

This subsection's content...

\subsubsection{Article Information}

This subsubsection's content...

As you can see, the commands are fairly intuitive. Notice that you do not
need to specify section numbers. Latex will sort that out for you! Also, for
sections, you do not need to markup which content belongs to a given block,
using nbegin and nend commands, for example.

Numbering of the sections is performed automatically by Latex, so don't
bother adding them explicitly, just insert the heading you want between the
curly braces. If you don't want sections number, then add an asterisk (*) after
the section command, but before the �rst curly brace, e.g., \section*{A Title Without Numbers}.

2.5 The bibliography

Any good research paper will have a whole list of references. In this example
document, I have included one. If you look at the PDF version, then after
the �rst instance of `Latex' in the introduction, you should notice a numbered
reference. And at the end of the document, you can see the full reference.



8 CHAPTER 2. DOCUMENT STRUCTURE

Fortunately, Latex has a slightly more intelligent approach to managing
your references than the average word processor, like MS Word for example,
where everything has to be inputted manually (unless you purchase a 3rd party
add-on). There are two ways to insert your references into Latex: the �rst is
to store them in an external �le and then link them via a command to your
current document, or secondly, embed them within the document itself. In this
chapter, I shall quickly cover the latter. Although, the former will be covered
in depth in a future tutorial, as it is by far the most e�cient and 
exible.

There are two stages to setting up your biblography/references in a docu-
ment. The �rst is to set up a bibliography environment, which is where you
provide Latex with the details of the references. The second is the actual citation
of your references within your document.

The following code was used in creating the bibliography environment for
the example document in this tutorial. It is located immediately after the last
line of the document content, but before the \end{document} command.

\begin{thebibliography}{9}

\bibitem{lamport94} Leslie Lamport, \emph{\LaTeX: A Document

Preparation System}. Addison Wesley, Massachusetts, 2nd Edition,

1994.

\end{thebibliography}

Ok, so what is going on here? The �rst thing to notice is the establishment
of the environment. thebibliography is a keyword that Latex recognises as
everything between the begin and end tags as being data for the bibliography.
The optional argument which I supplied after the begin statement is telling
Latex how wide the item label will be when printed1. Note however, that it
is not a literal parameter, i.e the number 9 in this case, but a text width.
Therefore, I am e�ectively telling Latex that I will only need reference labels
of one character in width, which means no more than nine references in total.
If you want more than ten, then input a two-digit number, such as '99' which
permits less than 100 references.

Next is the actual reference entry itself. This is pre�xed with the nbibitemfcite key g
command. The cite key is should be a unique identi�er for that particular ref-
erence, and is often some sort of mnemonic consisting of any sequence of letters,
numbers and punctuation symbols (although not a comma). I often use the
surname of the �rst author, followed by the last two digits of the year (hence
`lamport94'). If that author has produced more than one reference for a given
year, then I add letters after, `a', `b', etc. But, you should whatever works for
you. Everything after the key is the reference itself. You need to type it as
you want it to be presented. I have put the di�erent parts of the reference,
such as author, title, etc., on di�erent lines for readability. These line breaks
are ignored by Latex. I wanted the title to be in italics, so I used the nemph
command to achieve this.

To actually cite a given reference within your document is very easy. Goto
the point where you want the citation to appear, and use the following: \cite{cite_key},
where the cite key is that of the bibitem you wish to cite. When Latex pro-
cesses the document, the citation will be cross-referenced with the bibitems

1An item label is simply the number that appears before the actual reference that allows

you to cross reference it with the cited number within the document



2.5. THE BIBLIOGRAPHY 9

and replaced with the appropriate number citation. The advantage here, once
again, is that Latex looks after the numbering for you. If it was totally manual,
then adding or removing a reference can be a real chore, as you would have to
re-number all the citations by hand.

Of course, it may be your preference to use a di�erent referencing system,
such as Harvard, instead of the default numerical. This will be covered in the
future, in the mean time, why not try to experiment with the \package{Natbib}
package.



10 CHAPTER 2. DOCUMENT STRUCTURE



Appendix A

History of LATEX

Some interesting stu� about LATEX. . .

11


