
FAQchat as an Information Retrieval System

Bayan Abu Shawar, Eric Atwell and Andrew Roberts

School of Computing
University of Leeds, LS2 9JT, UK

{bshawar, eric, andyr}@comp.leeds.ac.uk

Abstract
A chatbot is a conversational agent that interacts with users through natural languages. In this paper, we describe a new way to access
information using a chatbot. The FAQ in the School of Computing at the University of Leeds has been used to retrain the ALICE
chatbot system, producing FAQchat. The results returned from FAQchat are similar to ones generated by search engines such as
Google. For evaluation, a comparison was made between FAQchat and Google. The main objective is to demonstrate that FAQchat is
a viable alternative to Google and it can be used as a tool to access FAQ databases.

1. Introduction
Human computer interfaces are created to facilitate

communication between human and computers in a user
friendly way. For instances information retrieval systems
such as Google are used to remotely access and search a
large information system based on keyword matching.
However, the best interface is arguably one which fools
you into thinking that you are speaking/asking a real
human; a chatbot.

A chatbot is a conversational software agent, which
interacts with users using natural language. The idea of
chatbot systems originated in the Massachusetts Institute
of Technology, where Weizenbaum implemented the
ELIZA chatbot to emulate a psychotherapist
(Weizenbaum, 1966). After ELIZA, a lot of chatbots or
human-computer dialogue systems have been developed
either to simulate different fictional or real personalities
such as PARRY (Colby, 1999) to simulate a paranoid
patient, or to be used as an interface to help systems or
web-based search engines such as AskJevees (2004). We
have worked with the ALICE open-source chatbot
initiative. ALICE (ALICE, 2002; Wallace, 2003) is the
Artificial Linguistic Internet Computer Entity, developed
by Wallace in 1995. In the ALICE architecture, the
“chatbot engine” and the “language knowledge model”
are clearly separated, so that alternative language
knowledge models can be plugged and played. We have
techniques for developing new language models, to chat
around a specific topic: the techniques involve machine
learning from a training corpus of dialogue transcripts, so
the resulting chatbot chats in the style of the training
corpus.

User input is effectively used to search the training
corpus for a nearest match, and the corresponding reply is
output. We adapted this chatbot-training program to the
FAQ in the School of Computing (SoC) at University of
Leeds, producing the FAQchat system. The results
returned from FAQchat are similar to ones generated by
search engines such as Google, where the outcomes are
links to exact or nearest match web pages. A search
engine is “a program that searches documents for specific
keywords and returns a list of the documents where the
keywords were found.” (Internet.com, 2004). However
FAQchat could also give direct answers and the
algorithm underlying each tool is different.

Section 2 describes ALICE architecture. Section 3
presents a brief introduction about the previous work. To

evaluate FAQchat, a comparison was made between the
FAQchat and Google presented in section 4. Section 5
describes the methodology of evaluation. Results are
discussed in sections 6. Section 7 presents our conclusion
that FAQchat is a viable alternative to Google in
accessing FAQ databases.

2. ALICE system architecture
ALICE stores knowledge about English conversation

patterns in AIML files. AIML, or Artificial Intelligence
Mark-up Language, is a derivative of Extensible Mark-up
Language (XML). It was developed by the Alicebot free
software community during 1995-2000 to enable people
to input dialogue pattern knowledge into chatbots based
on the ALICE free software technology. AIML consists
of data objects called AIML objects, which are made up
of units called topics and categories. The topic is an
optional top-level element, it has a name attribute and a
set of categories related to that topic. Categories are the
basic unit of knowledge in AIML. Each category is a rule
for matching an input and converting to an output, and
consists of a pattern, which represents the user input, and
a template, which implies the ALICE robot answer. The
AIML pattern is simple, consisting only of words, spaces,
and the wildcard symbols _ and *. The words may consist
of letters and numerals, but no other characters. Words
are separated by a single space, and the wildcard
characters function like words. The pattern language is
case invariant. The idea of the pattern matching technique
is based on finding the best, longest, pattern match.

2.1 Types of ALICE/AIML categories
There are three types of categories: atomic

categories, default categories, and recursive categories.
Atomic categories are those with patterns that do not

have wildcard symbols, _ and *, e.g.:

<category><pattern>10 Dollars</pattern>
<template>Wow, that is cheap!</template>
</category>

In the above category, if the user inputs ’10 dollars’,

then ALICE answers ‘Wow, that is cheap’.
Default categories are those with patterns having

wildcard symbols * or _. The wildcard symbols match
any input but they differ in their alphabetical order.
Assuming the previous input 10 Dollars, if the robot does

not find the previous category with an atomic pattern,
then it will try to find a category with a default pattern
such as:

<category><pattern>10 *</pattern>
<template>It is ten.</template> </category>

So ALICE answers ‘It is ten’.
Recursive categories are those with templates having

<srai> and <sr> tags, which refer to simply recursive
artificial intelligence, and symbolic reduction. Recursive
categories have many applications: symbolic reduction
that reduces complex grammatical forms to simpler ones;
divide and conquer that splits an input into two or more
subparts, and combines the responses to each; and dealing
with synonyms by mapping different ways of saying the
same thing to the same reply as the following example:

<category><pattern>HIYA</pattern>
<template><srai>Hello</srai></template>
</category>

The input is mapped to another form, which has the

same meaning.

2.2 ALICE/AIML pattern matching technique
The AIML interpreter tries to match word by word to

obtain the longest pattern match, as this is normally the
best one. This behaviour can be described in terms of the
Graphmaster set of files and directories, which has a set
of nodes called nodemappers and branches representing
the first words of all patterns and wildcard symbols.
Assume the user input starts with word X and the root of
this tree structure is a folder of the file system that
contains all patterns and templates; the pattern matching
algorithm uses depth first search techniques:

If the folder has a subfolder starting with underscore
then turn to, “_/”, scan through it to match all words
suffixed X, if no match then:

Go back to folder, try to find a subfolder starts with
word X, if so turn to “X/”, scan for matching the tail of
X, if no match then:

Go back to the folder, try to find a subfolder start
with star notation, if so, turn to “*/”, try all remaining
suffixes of input following “X” to see if one match. If no
match was found, change directory back to the parent of
this folder, and put “X” back on the head of the input.
When a match is found, the process stops, and the
template that belongs to that category is processed by the
interpreter to construct the output.

3. Previous work
A Java program was developed to converts the

readable text (corpus) to the chatbot language model
format. Two versions of the program were generated. The
first version is based on simple pattern template category,
so the first turn of the speech is the pattern to be matched
with the user input, and the second is the template that
holds the robot answer. This version was tested using the
English-language Dialogue Diversity Corpus (DDC)
(Mann, 2002), to investigate the problems of utilising
dialogue corpora (Abu Shawar and Atwell, 2003a). The
learning techniques range from primitive literal matches
to corpus utterances, to more complicated patterns

involving identification of the most significant words in
an utterance (Abu Shawar and Atwell, 2003b).

In the first word approach we assumed that the first
word of an utterance may be a good clue to an
appropriate response: if we cannot match the input
against a complete corpus utterance, then at least we can
try matching just the first word of a corpus utterance. For
each atomic pattern, we generated a default version that
holds the first word followed by wildcard to match any
text, and then associated it with the same atomic
template.

The first word approach was tested using the Corpus
of Spoken Afrikaans (Rooy, 2002). Unfortunately this
approach still failed to satisfy our trial users, so we
looked for the word in the utterance with the highest
"information content", the word that is most specific to
this utterance compared to other utterances in the corpus.
This should be the word that has the lowest frequency in
the rest of the corpus. The most significant approach was
selected to generate the default categories, because
usually in human dialogues the intent of the speakers is
hiding in the least-frequent, highest-information word.
The program calculates the Afrikaans corpus word-
frequency list, and then a comparison is run against each
token in each pattern to find the least frequent word with
that pattern. Four categories holding the most significant
word were added to handle the positions of this word
first, middle, last or alone. The feedback showed
improvement in user satisfaction (Abu Shawar and
Atwell, 2003c).

4. Comparing the FAQchat with Google
Google is “a search engine which is very easy to use.

It returns pages based on the number of sites linking to
them and how often they are visited, indicating their
popularity.” (SeniorNet, 2004). Search engines like
Google retrieve information in four phases (Boyle, 2003):
1. Obtaining documents to be searched. The method

used gives a classification of search engine types:
a. Search engines which use crawlers, or spiders to

get URLs such as Google;
b. Search engines based on human submission;
c. Others that are a combination of the two.

2. Preparing the documents to be searched, which
involve operations such as: filtering the text, and
extracting the meaningful items.

3. Indexing the items. One of the mechanisms used by
Google is the inverted file structure. Three stages are
applied here:
a. Each document has a unique ID;
b. A dictionary of all stemmed words from all

documents is created.
c. Each item in the dictionary is associated with a

pointer to the inversion list. The inversion list
associates each item to all documents containing
it.

4. The matching process to give the best answer to a
specific user query. One of the most widely used
methods is the vector space model, where a two-
dimensional array (term by document) is constructed
with size M x N; M represents the items in
dictionary, and N represents the documents. A
weighting scheme may be applied such as column
normalisation or tf-idf. The users query is

represented as a vector of size M, and it is
normalised, stemmed, and weighted in the same
manner as the document’s items. At the end the best
hit will be selected using different methods of
ranking. This ranking algorithm is the “hidden
ingredient” differentiating rival search engines.

Most search engines break up the user query into

keywords, and return results according to keyword
matches like Google. Ask Jeeves (2004) is a search
engine that returns a result after understanding the query,
using a question-processing engine to understand the
meaning of the words and grammar of the question.
FAQchat is a compromise between the two. In retrieving
information FAQchat will try to give the results using
most significant words as keywords, and try to find the
longest pattern to match without using any linguistic
tools, or analysing the meaning. FAQchat does not need a
linguistic knowledge module, and also in principle is
language independent: it can be trained with FAQs in any
natural language. The way FAQchat works is described
below:
1. All questions and answers are extracted from the

whole database after applying a filtering process to
remove unnecessary tags.

2. The FAQ database yielded questions and (answers).
A list of links is constructed, containing the links
from FAQ to web pages containing answers.

3. A dictionary is created, containing all words in the
questions with frequencies of occurrence. Then the
first and second most significant words are extracted
from each question.

4. AIML pattern-matching rules, known as
“categories”, are created. There are two possible
types of match: input matches a complete FAQ
question; or input matches 1st or 2nd most significant
word in an FAQ question (least frequent words).
There are two types of responses generated, which
either has the direct answer (in the instance where
only one match was found) or if the most significant
words are found in more than one question, multiple
links are returned as a reply.

The aim of this evaluation is to show that FAQchat

works properly; it is not a search engine, but it could be a
tool to access web pages, and giving answers from FAQ
databases. The aim is not specifically to measure
comparative success of Google against FAQchat, but
merely to demonstrate the FAQchat is a viable
alternative. Moreover, the most significant word
approach has already been used to develop earlier
versions of the chatbot, which deal with text and
dialogues. The aim of this experiment is to show that the
same approach is applicable with the FAQ database.

5. Evaluation methodology
To evaluate FAQchat, an interface was built, which

has a box to accept the user input, and a button to send
this to the system. The outcomes appear in two columns:
one holds the FAQchat answers, and the other is holds
the Google answers after filtering it to the FAQ database.
Google allows search to be restricted to a given URL, but
this still yields all matches from the whole SoC website

(http://www.comp.leeds.ac.uk) so a Perl script was
required to exclude matches not from the FAQ sub-pages.

An evaluation sheet was prepared which contains 15
information-seeking tasks or questions on a range of
different topics related to the FAQ database. The tasks
were suggested by a range of users including SoC staff
and research students to cover the three possibilities
where the FAQchat could find a direct answer, links to
more than one possible answer, and where the FAQchat
could not find any answer. In order not to restrict users to
these tasks, and not to be biased to specific topics, the
evaluation sheet included spaces for users to try 5
additional tasks or questions of their own choosing. Users
were free to decide exactly what input-string to give to
FAQchat to find an answer: they were not required to
type questions verbatim; users were free to try more than
once: if no appropriate answer was found; users could
reformulate the query.

The evaluation sheet was distributed among 21
members of the staff and students. Users were asked to
try using the system, and state whether they were able to
find answers using the FAQchat responses, or using the
Google responses; and which of the two they preferred
and why.

6. Results
Twenty-one users tried the system; nine members of

the staff and the rest were postgraduates. The analysis
was tackled in two directions: the preference and the
number of matches found per question and per user.

6.1 Number of matches per question
The number of evaluators who managed to find

answers by FAQchat and Google was counted, for each
question.

Results in table 1 shows that 68% overall of our
sample of users managed to find answers using the
FAQchat while 46% found it by Google. Since there is no
specific format to ask the question, there are cases where
some users could find answers while others could not.
The success in finding answers is based on the way the
questions were presented to FAQchat.

Users
/Tool

Mean of users
finding answers

Proportion of
finding answers

 FAQchat Google FAQchat Google
Staff 5.53 3.87 61% 43%
Student 8.8 5.87 73% 49%
Overall 14.3 9.73 68% 46%

Table 1: Proportion of users finding answers

Of the overall sample, the staff outcome shows that

61% were able to find answers by FAQchat where 73%
of students managed to do so; students were more
successful than staff.

6.2 The preferred tool per each question
For each question, users were asked to state which

tool they preferred to use to find the answer. The
proportion of users who preferred each tool was
calculated. Results in figure 1 shows that 51% of the

staff, 41% of the students, and 47% overall preferred
using FAQchat against 11% who preferred the Google.

6.3 Number of matches and preference found per
user

The number of answers each user had found was
counted. The proportions found were the same. The
evaluation sheet ended with an open section inviting
general feedback. The following is a summary of the
feedback we obtained:
1. Both staff and students preferred using the FAQchat

for two main reasons:
a. The ability to give direct answers sometimes while

Google only gives links.
b. The number of links returned by the FAQchat is

less than those returned by Google for some
questions, which saves time browsing/searching.

2. Users who preferred Google justified their preference
for two reasons:
a. Prior familiarity with using Google.
b. FAQchat seemed harder to steer with carefully

chosen keywords, but more often did well on the
first try. This happens because FAQchat gives
answers if the keyword matches a significant
word. The same will occur if you reformulate the
question and the FAQchat matches the same word.
However Google may give different answers in
this case.

6.4 Samples of chatting
In this section samples of asking questions to

FAQchat and Google are presented which show the
different answer possibilities: direct answer, or a set of
related links as shown in figure 2 and figure 3.

a. Direct answer generated by FAQchat using the
FAQ of the school of computing at University of Leeds

Human: How can I remove a job from the printer?
FAQchat:
If you want to remove a job from the printer queue then
find out the job number using the lpq command, and in a
UNIX shell type:

% lprm -P printername job_no

You can only remove jobs that you have sent to the
printer yourself - apart from Support that is.

For more information look at:
How do I remove a job from the printer queue? (Printing)

b. Related links generated by FAQchat

Human: How can I delete a job from a printer?
FAQchat: You may find your answer in the following
links:
How do I check the printer queue? (Printing)
How do I remove a job from the printer queue? (Printing)
How do I check my printer credits? (Printing
How do I use the printer from a Windows machine?
(Other Windows information)

Figure 2: Answers generated by FAQchat

FAQchat could generate either a direct answer or

related links for the same question. This is because the
matching process is based on matching the most
significant words found in the user input. In figure 2
sample a, the significant words are “remove”, and
“printer” in addition to the first word “how”. Where in
sample b, the significant word is “printer” only in
addition to the first word “how”. So different answers
could be generated based on the way the question is
formulated.

Figure 3 shows that both Google’s and FAQchat’s
answer is the same as the top answer in produce by
FAQchat. However, FAQchat provides all links related to
courseworks, where link number three holds the answer
for the user’s input.

a. Answers generated by FAQchat

Human: What happens if i can't submit the coursework
on time?
FAQchat: You may find your answer in the following
links:
Examinations/Coursework (General Information)

Why coursework? (Examinations/Coursework)

What if I can't hand coursework in on time?
(Examinations/Coursework)

Can students be granted extensions or exemptions from
coursework? (Teaching)

What are the penalties for late submission of coursework?
(Teaching)

b. Answers generated by Google for the same question

Examinations/Coursework
... 5. What happens if I can't attend my exam ...
DOESN'T HAPPEN!! ... If a student is considered
by the School Examinations Board to have made no
serious attempt to pass a ...
www.comp.leeds.ac.uk/faq/public/x0704.html - 14k -
Supplemental Result - Cached - Similar pages

Figure 3: Answers generated by FAQchat and Google

Which tool do you prefer?

0%

10%

20%

30%

40%

50%

60%

FAQchat Google

Tool

A
ve

ar
g

e
p

er
ce

nt
ag

e
n

u
m

b
er Staff

Student

Total

Figure 1: Proportion of preferred tool

7. Conclusions
Feedback favourable to FAQchat was gained from

almost all users, even those who preferred Google.
Overall, they found it a novel and interesting way to
access the FAQ using natural language questions.
Overall, about two thirds of users managed to find
answers by FAQchat, and about two thirds of the users
preferred to use it.

The aim was not to try to evaluate the two systems to
come up with relative scores, but to show that it is a
viable alternative way of Google and it could be used as a
tool to access FAQ databases.

8. References
ALICE. (2002). A.L.I.C.E AI Foundation,

http://www.Alicebot.org/
Abu Shawar, Bayan; Atwell, Eric. (2003a). Using

dialogue corpora to train a chatbot. In: Archer, D,
Rayson, P, Wilson, A & McEnery, T (editors)
Proceedings of Corpus Linguistics 2003, pp. 681-690

Abu Shawar, Bayan; Atwell, Eric. (2003b). Machine
learning from dialogue corpora to generate chatbots.
Expert Update, vol. 6, pp. 25-30.

Abu Shawar, Bayan; Atwell, Eric. (2003c). Using the
corpus of Spoken Afrikaans to generate an Afrikaans
chatbot. Southern African Linguistics and Applied
Language Studies. Vol. 21, pp. 283-294.

Abu Shawar, Bayan; Atwell, Eric. (2004). An Arabic
chatbot giving answers from the Qur'an. In: Bel, B and
Marlien, I (eds.) Proceedings of TALN04. Vol 2, pp.
197-202 ATALA.

AskJevees. (2004). [Online]: http://ask.co.uk/home
Boyle, Roger. (2003). Understanding search engines. In:

Boyle, R (ed) COMP1600: SY11 Introduction to
Computer Systems 1. Lecture Notes. School of
Computing, University of Leeds, UK. pp 65-72.

Colby, K. (1999). Human-computer conversation in a
cognitive therapy program. In: Wilks, Y. (ed.) Machine
conversations. Kluwer, London. pp 9-19.

Internet.com. (2004). Search engine. [Online]:
http://www.webopedia.com/TERM/s/search_engine.ht
m

Mann, W. (2002). Dialog Diversity Corpus.
http://wwwrcf.usc.edu/~billmann/diversity/DDivers-

site.htm
SeniorNet. (2004). Lesson 4. [Online]:

http://www.seniornet.org/php/default.php?ClassOrgID
=5337&PageID=5920

Van Rooy, B. (2002). Transkripsiehandleiding van die
Korpus Gesproke Afrikaans. [Transcription Manual of
the Corpus Spoken Afrikaans.] Potchefstroom:
Potchefstroom University

Wallace, R. (2003) The elements of AIML style. ALICE
AI Foundation.

Weizenbaum, J. (1966). ELIZA – A computer program
for the study of natural language communication
between man and machine. Communications of the
ACM. Vol. 10, No. 8, pp 36-45.

Martin, L.E. (1990). Knowledge Extraction. In

Proceedings of the Twelfth Annual Conference of the
Cognitive Science Society (pp. 252--262). Hillsdale,
NJ: Lawrence Erlbaum Associates.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

