
The candidate confirms that the work submitted is their own and the appropriate
credit has been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source
may be considered as plagiarism.

 (Signature of student) ______________________________

 Automatic Acquisition of Word
Classification Using Distribution
Analysis of Content Words with

Respect to Function Words

Andrew Roberts

Computer Science
(2001/2002)

 ii

Summary

This project describes a method which can automatically infer word classification. Previous

systems designed to assign parts-of-speech to words sought the use of training data or were

built upon rules devised by experts in linguistics. The report details the use of an

unsupervised approach that can reduce significantly the reliance on prior linguistic intuition.

The study looks in to how words behave relative to the function words. As these are the

most common words, there is a great deal of information that can be attained. It was

possible to analyse how the content words from a given body of text were distributed with

respect to the function words. This information could be used as a profile, and therefore

content words with a similar profile against the function words could be assumed to be of

similar word class.

Agglomerative hierarchical clustering techniques were applied to partition words into

different clusters. Words that were deemed similar were grouped together, and thus, each

cluster should contain words that posses the same part-of-speech.

This project performed many experiments to investigate how the many factors affected the

overall clustering performance, in order to find the optimal parameters. The results report an

accuracy of 87% when performed on the LOB corpus. Experiments were also carried out

with an alternative Spanish corpus and the clustering accuracy achieved 85%. Semantic

clustering was also observed indicating the effectiveness of the described approach for the

task of automatically acquiring word classification.

 iii

Acknowledgements

I would like to thank my project supervisor, Clive Souter for his guidance, advice, patience

and for the cups of tea.

Thanks to Bill Whyte and John Elliott who conceived the idea for the project (see appendix

B). Also, to their kindness for allowing me to frequently interrupt their time to discuss ideas

and problems. Thanks also to Eric Atwell for his inspiration and support.

I am grateful to Alex Boag-Munroe for kindly allowing me to remotely log in and hog his

super-fast PC so that I could perform a large proportion of the experiments.

Finally, thanks to my family and friends for coping admirably with my moods and stress

during the time spent working on this project, notably, Alex Morrison, Chris Walton and Ron

Hamiliton.

Especial thanks to Leonora.

 iv

Contents

1 Introduction...1

1.1 What’s the problem?..1

1.2 Aims and objectives ...2

1.2.1 Overall Aim Of The Project..2

1.2.2 Objectives Of The Project..2

1.2.3 Minimum Requirements Of The Project..2

1.3 Scope ...2

1.4 Structure of report ..3

2 Background...4

2.1 Word Classes...4

2.2 Corpora ..4

2.3 Tagging ..5

2.4 Ambiguity..6

2.5 Function Words..6

2.6 Automatically Acquiring Word Classification ...7

2.7 Relevant Research ..8

2.8 Clustering ...10

2.9 Summary..11

3 Method for solution..12

3.1 Obtaining function words ...12

3.2 Gathering distribution data...13

3.2.1 Normalising ..15

3.3 Clustering ...17

3.3.1 Measuring similarity ...17

3.3.2 Distance matrix ..18

3.3.3 Clustering algorithms...18

3.4 Obtaining a corpus ...22

4 Design and Implementation ..25

4.1 Segmentation ...25

4.1.1 Punctuation policy..25

4.2 Remove function words ...27

4.3 Find n most frequent words ...27

 v

4.4 Indexing..27

4.5 Distribution ...28

4.6 Clustering ...29

4.7 Choice of programming language ...29

5 Experiments ..31

5.1 Factors ...31

5.2 How to evaluate clusters..31

5.3 Effect of clustering algorithm ...33

5.4 Effect of number of function words..34

5.5 Effect of window size...38

5.6 Effect of the number of clusters...38

5.7 Semantic Clusters..40

5.8 Alternative language ..41

5.8.1 Semantic Clustering...43

6 Future Work...44

6.1 More experiments ..44

6.2 Automatically obtaining function words ...44

6.3 Improving the context measure ...45

6.4 Incremental learning ..45

6.5 Other languages...46

7 Conclusions ..47

7.1 Review..47

7.2 Experimental findings...48

References..50

Appendix A – Reflection on project experience ..56

Appendix B – Discussion paper by Bill Whyte and John Elliott57

Appendix C – The LOB corpus tagset...60

Appendix D – Clustering output...67

 1

1 Introduction

1.1 What’s the problem?

This project primarily deals with attempting to differentiate words according to their word

classification, e.g., is it a noun? Or a verb? Etc. This process is referred to as tagging, and

is a task found within the field of Natural Language Processing (NLP).

Tagging is described in more detail in section 2. It is important to appreciate, however, that

tagging has an important role within NLP and helps to provide a solid foundation for many

larger applications which require the information that tagging can provide. It is for that

reason that taggers have been around as early as the 1960's.

Early taggers relied on expert linguists to define rules which would then be able to assign a

word with its respective classification. The next breed of taggers used statistical techniques

to calculate probabilities in order to determine the word classification. This still requires

experts in order to gain maximum potential out of such a tagger, as it needs to be trained in

order to be effective.

The aim of this project has been to attempt a more novel approach than those used in

taggers over the past 40 years. In more recent years, the idea of utilising unsupervised

techniques in tagging has showed promising results. This essentially involves looking at

how words behave relative to each other. By analysing which words appear in close

proximity (and for that matter, also those that do not) it is possible to gain a great deal of

information that can be used to partition words into their correct classification, with the need

of prior expert knowledge.

More specifically, looking at how words behave relative to function words is what this

research concentrates on. Function words are a small set of words which occur most

frequently in the English language and play an important part in grammar. It is therefore

reasonable to expect that they possess lots of information that can be extracted to acquire

word classification. Investigating that hypothesis is the purpose of this project.

 2

1.2 Aims and objectives

1.2.1 Overall Aim Of The Project

The aim of the project is to apply Natural Language Learning (NLL) techniques to develop

methods to determine the classification of words automatically.

1.2.2 Objectives Of The Project

1. To investigate the current techniques used to tag words into parts-of-speech.

2. Look at NLL techniques to determine whether any may be useful for solving the

problem.

3. Obtain a variety of samples of written text on which to apply NLL techniques on.

4. Develop an algorithm to automatically classify words from an inputted sample of text.

5. Evaluate and verify accuracy of algorithm by comparing results to tagged corpora

created by expert linguists.

1.2.3 Minimum Requirements Of The Project

1. To produce an algorithm that can analyse the relationship between content words

and a given set of function words.

2. By looking at such relationships, extend the algorithm to cluster words which behave

similarly to each other, relative to the function words.

3. Verify that the majority of content words in each cluster are of an equivalent class of

words, e.g., nouns.

4. To test the algorithm on English plus one other language.

1.3 Scope

Whilst the majority of this report focuses on what the project has done, it is worth noting now

what this project has not done. This is because with work of this nature, there is no limit to

the depth of research which could potentially be carried out. The purpose of this sub-section

is therefore to outline the main boundaries to define the scope of this project.

 3

The objective of this project is not to produce a highly accurate tagger per se; it is to develop

a method which requires as little linguistic intuition as possible to acquire word classification,

and investigate the effectiveness of that method by experimenting and evaluating its

accuracy. If it transpired that the method implemented was only 10% accurate, then the

aims and objectives of the project would still have been met – with the conclusion that the

proposed method is unsuitable for this task.

Another worthwhile point is that this project is not a software engineering exercise. Although

a considerable amount of programming is involved to implement the solution – the software

is the tool for evaluating the feasibility of the proposed method to automatically acquire word

classification. Therefore, despite belief of the author that the implementation is efficient, and

more importantly, correct, there are no guarantees that it is so. Design and testing for the

coding of the software will not feature in this report.

1.4 Structure of report

Section 2 introduces all the relevant background information that aims to provide a broad

understanding of all topics and principles that are covered throughout the rest of the report.

Section 3 will discuss the approach that was used to develop a method of automatically

classifying words. Section 4 goes on to describe the implementation of the algorithms

outlined in section 3 and how they are used to obtain the results. Section 5 summarises the

experiments performed using the software to discover what influence the many factors have

on the overall clustering accuracy. Section 6 examines potential work for the future. Finally,

section 7 provides the conclusions of the project, reporting on what has been achieved and

experimental findings.

 4

2 Background

2.1 Word Classes

The English language can be broken down into parts-of-speech. At the highest level, there

are closed class types and open class types. Closed classes are so called because they

remain relatively permanent. The closed classes all tend to be function words, therefore,

examples would be pronouns, prepositions, conjunctions etc. Such classes remain

comparatively static, in that new function words rarely occur. In contrast, the open classes

do not remain fixed; examples of open classes are nouns and verbs, of which new words of

these types are added continuously (Jurafsky and Martin 2000). The rate at which new

words are “discovered” is considerable. The Oxford English Dictionary (Simpson and

Weiner 1989) – seen by many as the authority for its coverage of the English language, past

and present – has a team of skilled linguists whose job is to “discover” new words and

gather evidence of its usage. Subscribers to the OED online service can expect the benefit

of “at least 1,000 new and revised words will be released each quarter”. Such a statement

illustrates not only the rate of which new words are adopted in everyday language, but also

to how defined words are adapted to provide new meanings.

N.B. Word class and part-of-speech will be used interchangeably in this report.

2.2 Corpora

A corpus is essentially a collection of text. In order to expand, corpus samples are often

taken from newspaper articles, novels etc. Popular English corpus resources include:

• Brown Corpus (Kucera and Francis 1967, Francis 1979 and Francis and Kucera

1982)

• LOB Corpus (Johansson et al. 1986)

• COBUILD Corpus (Sinclair 1987)

• British National Corpus (Leech 1993)

Each corpus contains various quantities of words, from different samples. For example, the

Brown corpus was designed as a representative sample of written American English. The

LOB corpus was created as a British English equivalent.

 5

Corpora are not restricted to collections of written text. There exist many spoken word

corpora. Such a corpus is a collection of spoken utterances. It is worth noting that the

words, and their usages can vary tremendously – it should not come as any surprise to

reveal that the language used when a person speaks will often be different to the language

they use when writing. Examples of spoken corpora:

• London Lund Corpus (Svartvik 1990)

• Lancaster/IBM Spoken English Corpus (SEC) (Taylor and Knowles 1988)

• Corpus of London Teenage Language (COLT) (Haslerud and Stenström 1995)

2.3 Tagging

The discipline of Natural Language Processing has long sought to investigate the

information that can be gained by analysing how words of different parts-of-speech behave

relative to each other (Manning and Schütze 2000). In order to do that, there must exist a

large corpus of words, each respectively assigned a tag to indicate which word class they

belong to.

To achieve a tagged corpus, a tagset must first be defined. Tagsets can vary enormously in

size from 40 to 200 tags (Jurafsky and Martin 2000). Of course, a significant number of

those tags are associated with punctuation. See appendix C for the tagset used by the LOB

corpus. Popular tagsets include:

• 45-tag Penn Treebank tagset (Marcus et al. 1993)

• 61 tag C5 tagset used for the British National Corpus (Garside et al. 1997)

• 87-tag tagset used for the Brown corpus (Francis 1979; Francis and Kucera 1989)

• 146-tag C7 tagset (Leech et al. 1994)

It would be unfeasible to expect an expert linguist to manually tag the words of an entire

corpus at is could contain hundreds of thousands, if not millions of words! Instead,

automatic algorithms to perform this task have been created; these fall into two main

categories: rule-based tagging and stochastic. Rule-based tagging – as the name suggests

– relies upon hand-written rules which define constraints to ensure correctness. A typical

approach uses a two-phase approach. See early examples of this approach in Harris (1962);

Klein and Simmons (1963); Greene and Rubin (1971). The first stage uses a dictionary

lookup containing words and their potential parts-of-speech. The second stage is to then

 6

apply the rules to remove any ambiguity, thus reducing the list to a single tag for each word.

Stochastic tagging involves the use of probabilities to determine the most likely tag for a

word, such as HMM1-based or cue-based. Using probabilities in tagging is an obvious

approach and has been utilised for many decades. First used by Stolz et al. (1965), various

stochastic taggers include Marshall (1983), Garside (1987), and Church (1988). HMM

taggers have to be trained on previously tagged data in order to calculate the probabilities

for tag sequences. Also, it has been demonstrated that with the use of the Expectation-

Maximisation (EM) algorithm (Dempster et al. 1977), that stochastic models can be trained

on untagged data (Cutting et al. 1992). However, this method still requires a dictionary of

words with their respective word tags. The EM algorithm is then able to calculate the

likelihood for each tag and tag-transition probabilities. Experiments so far, however, have

shown that taggers trained on tagged data will perform better than ones employing the EM

algorithm (Merialdo 1994).

2.4 Ambiguity

The majority of words can easily be classified because they only belong to a single word

class. However, many of the common words used can have more than one part-of-speech.

For example, ‘dish’ can have more than one usage: as a noun in dish of soup, or as a verb,

as in dish the soup. Such cases are known as ambiguous. With respect to tagging, it is up

to the algorithm employed to disambiguate words by ensuring they take the context of its

usage into consideration.

2.5 Function Words

For this project, particular attention will be focused on the function words that appear within a

given text. As mentioned previously, function words tend to fall into the closed classes. The

closed classes are (with examples which are by no means exhaustive):

• Prepositions: on, at, to, of

• Determiners: a, an, the

• Pronouns: she, who, I

• Conjunctions: and, but, if, or

1 Hidden Markov Model

 7

• Auxiliary verbs: can are, may

• Particles: up, in, by

Function words have an important part in grammar. They appear the most frequently, which

also explains why they are short in length. In the development of language, common words

are also short words because they require less effort to use. (Zipf, 1949)

2.6 Automatically Acquiring Word Classification

This project will focus primarily on the automatic acquisition of word classification. The

difference between this method and other part-of-speech tagging essentially comes down

the amount of expert linguistic knowledge the algorithm has incorporated. Tagging

algorithms rely on prior knowledge of the language such as grammatical rules and

precompiled lists of words with their possible tags. Automatically determining parts-of-

speech on the other-hand presumes no prior intuition and should be ignorant of the given

language, lexical types and grammatical rules – or, it is often referred to as unsupervised.

A popular and straightforward approach to solve the problem is by means of distributional

analysis. A statistical method of looking at where word types are positioned most frequently

within a sentence.

Its usefulness has been called into question. Chomsky has never been enthusiastic about

distributional linguistics (Chomsky 1964), or the automatic discovery of grammars,

concluding: “I think it is very questionable that this goal is attainable in any interesting way”

(Chomsky 1957). It is his belief that linguistic knowledge is already formed in the brain and

not acquired during learning because language is sparse and variable. However, the debate

to the innateness of language in humans need not concern this project.

Data sparseness is a problem throughout the domain of NLP. This can be explained using

Zipf’s Law. He observed (Zipf 1949) that if you list words in order of their frequency of

occurrence, then the relationship between the frequency of a word f and its position in the list,

known as its rank r, can be described as:

r
f

1
∝

 8

The implication of this law is that the vast majority of words that appear in a given corpus will

be sparse, and for relatively few common words will there be many examples (Manning and

Schütze 2000). For words that do not occur frequently, it is difficult to reliably deduce

information about them. One way to combat the problem is to simply use a larger corpus of

words, thus increasing the probability of rarer words to appear. Unfortunately, this is often

infeasible as the computational demands of processing large numbers of words becomes

astronomical (this is less restricting due to the ever increasing performance of computers).

Additionally, the greater the size of corpus, new words with sparse distributions appear.

Another possible approach is the hand-pick special examples to ensure certain words, word

combinations etc., are analysed. However, the overall result will not be representational of

common word usage as found in corpora.

2.7 Relevant Research

Kiss (1972), in the context of understanding the psychology of learning, studied the order of

acquisition of words in children. He showed that it was statistically possible to distinguish

different word classes based on their distributional properties. His approach took 30 words

from language found in children’s literature and clustered them based on their similarity to

their nearest neighbour bigram2 counts. He was restricted to only being able to classify few

words.

Baker (1975, 1979) published a model which originally intended as a procedure for

automatic training of speech recognition systems. However, it happened that it could be

also used for the purpose of tagging parts-of-speech. Assuming that a language could be

generated by a Markov process, then he proposed a technique to automatically calculate the

parameters of a Markov model which was compatible with the data. Unfortunately, Baker’s

recursive formulae for estimating the parameters of a Markov model was computationally

expensive which prevented any practical application (Atwell 1987).

Atwell (1987) attempted to apply the theory put forward by Baker (1975, 1979). He had to

place considerable constraints in order to make the computational demands more

reasonable; for example, the assumption that a word can only belong to a single word class.

Also, he only considered words located immediately before and after each designated word

2 An n-gram is a sequence of n successive objects. In this instance, the objects are words, and bi

represents n = 2.

 9

(although this was performed separately because processing was still very slow). Despite

some promising outcomes, Atwell acknowledged that his sample was too small to provide

conclusive results (at the time, using a sample of 200,000 words, the program took several

weeks on a mainframe computer to complete the task), and that the constraint on single

word class participation would need to be removed for the system to be wholly successful.

Hughes (1994) performed many experiments in order to find which factors give the best

accuracy when automatically determining parts-of-speech. The variables were:

1. The contextual pattern, e.g., sentence position distribution; various sized bigrams.

2. The metric used to calculate the distance between words in vector space.

3. The clustering method, e.g., Single linkage; Centre of gravity; Ward’s method etc.

4. The size of the comparison set.

With a 35 million word corpus available, generated from extracting USENET articles, the 200

most frequent words were used in the experiments, which were adequate to evaluate the

most effective factors. Once the best combination had been established, he clustered the

top 2000 occurring words from his corpus with a high degree of success: 87% accuracy if

the words are classified into 100 clusters.

Hughes found that the distributional redundancy of word types was revealed using bigrams

rather than absolute sentence position. And that the context of absolute sentence position

distribution was contained within the context of bigram counts.

Redington et al. (1998) undertook research into automatically acquiring syntactic categories

in the psychological context of attempting to understand the processes of how children learn

language showed good success. A particularly relevant experiment performed was

clustering a set of words with the function words removed. The reasoning for the test was

that child speech is sparse in function words in comparison the proportion of content words

they use. If they are effectively only concentrating on content words, then a child’s

mechanism for acquiring word classes does not require function words. That specific

experiment did show that word classification was in fact possible when function words were

excluded from the input stream. However, they did acknowledge that removal of the function

words did have a “considerable impact” on the informativeness of the results.

 10

2.8 Clustering

The principle of clustering algorithms is to divide a set of objects in to clusters. By using a

given measure of similarity, a good clustering algorithm will place objects that are similar into

the same cluster, whereas dissimilar ones are clustered into different groups.

Clustering is ideal for the automatic acquisition of parts-of-speech because is unsupervised

– in that it doesn’t require training of class labels to partition groups.

Clustering algorithms fall broadly into a few fundamental types. The first relates to the

structure of clustering that is employed. Flat clustering is simple in structure: consisting of a

particular number of clusters, where the relations between them are often undetermined.

The alternative is hierarchical clustering. This can be represented as a tree structure, where

the root is the entire set of objects, and each node corresponds to a subclass of its parent

node. The leaves of the tree are the individual objects that have been clustered. Another

type of clustering is defined by membership of objects in clusters. Hard clustering has the

constraint that an object can only belong to a single cluster. If membership in multiple

clusters is permitted, then the clustering algorithm has performed soft clustering (Manning

and Schütze 2000). Hard clustering in the context of this project has obvious implications

with regard to ambiguity of word types, and will need to be addressed during the selection of

the appropriate algorithm to solve the task.

The hierarchical method is the most applicable to the problem at hand. The clustering

methods used in this project are discussed in section 3.3

There is clearly a trade-off in choosing the right algorithm between the performance of the

clustering (with respect to the accuracy of the results) and its computation demands.

Clustering is a very expensive process, therefore efficiency is very important to allow a large

enough number of words to be clustered for the results to be conclusive. Previous research,

as mentioned above, have all suffered because of the restrictions caused by implausible

computing time of large samples. It is difficult to tell which particular method will give the

best results. It will therefore be necessary to experiment with various algorithms to establish

the one which gives optimal performance.

 11

2.9 Summary

Applying Natural Language Learning techniques to automatically determine parts-of-speech

is still in its infancy. This is due to progress being hindered by the huge computational

demands the problem exhibits. However, the results from the research discussed earlier are

promising enough to boost confidence that attempting to automatically acquire word classes

is not only feasible, but can be highly accurate.

By only concentrating on the role of the function words, and how content words are

distributed in relation to them - as opposed to looking at how each word interacts with every

other word - this should reduce the intensity of processing required to cluster the content

words into their respective word classes. Of course, there is the risk that the results may not

be as accurate due to that very fact that only the relationship between function words and

content words is being analysed. The experiment carried out by Redington et al. (1998)

showed that by not including the function words in the analysis, results were drastically

affected, which bodes well in the assumption that due to the importance of function words in

grammar, they are rich in syntactic information. It is ultimately the purpose of this project to

evaluate the effectiveness of this approach.

The overall goal of this line of research is worthwhile. Not only does it offer attractive

prospects for the use in deciphering unknown languages. As Atwell and Drakos (1987)

concluded, the ‘bottleneck’ in commercial exploitation of NLP systems would be resolved

because tailoring specialised applications could be automated in order to provide solutions

for a wide range of applications.

 12

3 Method for solution

3.1 Obtaining function words

Function words play an important role in this project, since all content words will be

compared by how they behave relative to them. For the sake of simplicity, automatically

acquiring these words was skipped and a list of the most common function words were

selected for use throughout the rest of the project.

Rank Function

word

Rank Function

word

Rank Function

word

Rank Function

word

Rank Function

word

1 the 11 for 21 not 36 one 61 into

2 of 12 he 23 this 37 there 65 then

3 and 13 as 24 but 39 we 74 any

4 to 14 be 25 from 43 so 89 before

5 a 15 on 27 are 44 when 112 between

6 in 16 with 28 which 45 if 118 because

7 that 17 I 30 her 51 who 124 without

8 is 18 his 33 they 57 what 129 each

9 was 19 at 34 an 58 my 132 another

10 it 20 by 35 were 59 could 145 while

Table 3.1 – The selected 50 function words and their rank in the LOB corpus.

The table above contains the 50 function words chosen for this project. They are listed in

order of rank from the LOB corpus. The top 20 words from the LOB corpus are captured in

the list of function words. The majority of the top 30 are present, and admittedly, after that,

they soon trail off to lower ranks. However, of the 50 picked, they all fall within the top 145

most frequent words in the LOB corpus, which still illustrates just how common the function

words are, considering the corpus contains 50,000 distinct words.

Although obtaining function words without the aid of any expert linguistic knowledge would

have certainly been preferable, the reason for this decision was due to the fact that size of

the project was large enough – it was important to concentrate on the core objectives. If the

results from using a given list of function words proved promising, then it would obviously be

worthwhile as a future extension to implement an algorithm to perform this task.

 13

3.2 Gathering distribution data

The method in which the distribution data is collected is the crux of this project and is what

differentiates it from the many other pieces of research that have employed a clustering

approach.

Firstly, a target function word and a target content word are selected. A window is specified,

i.e., the distance (measured in number of words) either side of the target function word that

you wish consider. For every occurrence of the target function word with in the corpus, the

target content word is checked to see if it fell within the window. If it did, a note of the

distance between the target words was made.

function = 'in' / content = 'the'

0

200

400

600

800

1000

1200

1400

1600

-4 -3 -2 -1 0 1 2 3 4

Position relative to funtion word

Fr
eq

ue
nc

y

in / the

Fig. 3.1 – Graph showing how ‘the’ is positioned relative to ‘in’ from the Don Quixote corpus.

By treating each possible position of the target content word as a separate dimension, it is

possible to represent the above graph as a vector by putting the frequency of occurrence for

each dimension. To obtain the matrix for the above distribution:

 14

Relative Position Frequency

-4 317

-3 288

-2 341

-1 0

0 0

1 1457

2 146

3 350

4 510

Fig. 3.2 – Demonstrating how the dist ribution data is translated in to a vector.

N.B. Storing the relative position of 0 in the matrix is not required since the content can

never be at position 0.

To produce a distribution profile for a given target content word against the function words, a

vector can be created for each function word with the same content word, then all

concatenated into a single vector (Fig 3.3). The number of dimensions that the final vector

possesses will be number of function words multiplied by the window size.

510
350
146
1457

0
341
288
317

 15

Fig. 3.3 – Joining the vectors to create a single vector that profiles the content word against all

function words.

3.2.1 Normalising

In order to compare vectors fairly, they must first undergo normalisation. To illustrate why it

is necessary, consider the following example: the distributions of the content words ‘first’ and

‘second’ relative to the function word ‘the’. They are both classed as the same part-of-

speech – in this case, ordinals. Therefore, it would be reasonable to expect that they would

behave similarly with the word ‘the’.

f1 / cn

2

0
5
9

0
2

7
0

f2 / cn

2

0
5
9

0
2

7
0

fk / cn

2

0
5
9

0
2

7
0

…

…

2

0
5
9

0
2
7

0

2

0
5
9
0

2
7
0

2
0
5

9
0
2

7
0

M

 16

Absolute

-4 -3 -2 -1 0 1 2 3 4

Position relative to function word

A
b

so
lu

te
 F

re
q

u
en

cy

the / first

the / second

Fig. 3.4 – Two graphs plotted showing the effect of normalisation.

The distributions on the left of Fig. 3.4 show the absolute frequency distributions. It is clear

to see that both content words share a similar ‘shape’. However, because the content word

‘first’ occurs more frequently in the corpus, the two words would be significantly dissimilar

and therefore may not end up being classed together.

In the graph on the right of Fig 3.4. The data has been normalised and now the two

distributions virtually overlap. By taking account of their relative frequency, there is a greatly

increased chance that similar words will be shown to be so, regardless of their absolute

frequency.

The formula for calculating a normalised vector is:

∑
=

=
m

j

ij
ij

Vij

V
V

1

'

Where the jth element of the vector Vi divided by the sum of all elements in Vi gives the jth

element of the normalised vector Vi’

Normalised

-4 -3 -2 -1 0 1 2 3 4

Position relative to function word

R
el

at
iv

e
F

re
q

u
en

cy

the / first

the / second

 17

3.3 Clustering

Using clustering techniques allows us to gather words into groups based on their distribution

relative to the function words.

3.3.1 Measuring similarity

The advantage of using vectors to represent a content word’s distribution is that they can be

plotted as individual points in a high-dimensional vector space. And so, words that behave

in a similar fashion will occupy a similar place in that vector space. It is therefore merely a

matter of calculating the distance between two vectors which will give a measure of

similarity3.

The use of distance normally refers to the Euclidian distance between two vectors. However,

there are many distance functions that can be used. For most problems, the generalised

Minkowski distance is more than adequate:

()
mk

j

m
yjxjyx VVVVD

1

1

),(

−= ∑

=

Where k is the number of elements in vectors Vx and Vy. Vxj is the jth component of the Vx

vector. Changing the value of m gives different distance functions. Two such functions

were used in this project.

3.3.1.1 Manhattan distance

Substituting 1 for m gives:

∑
=

−=
k

j
yjxjyx VVVVD

1

),(

3 For the sake of clarity, it is worth noting that distance is inversely proportional to similarity, i.e., the

greater the similarity between two vectors, the smaller the distance between them.

 18

w2

w3

w4

w5

w6

77.019.030.009.056.0
45.072.039.001.0

88.012.083.0
98.034.0

00.1

 w1 w2 w3 w4 w5

This measure simply returns the magnitude of the difference between the two vectors.

3.3.1.2 Euclidian distance

Substituting 2 for m gives:

()∑
=

−=
k

j
yjxjyx VVVVD

1

2),(

3.3.2 Distance matrix

A distance matrix is used to store the distances between each pair of vectors. This matrix

can be manipulated iteratively, which makes it an effective tool for the use in clustering.

The toy example shown in Fig. 3.5 demonstrates the role of a distance matrix. It is evident

that the matrix need only be a lower triangle matrix. The reason for this is twofold. Firstly,

the distance functions are commutative, i.e., D(Vi, Vj) = D(Vj, Vi). Secondly, the distance

between the same vector, D(Vi, Vi), always equals zero. Only having to store half the matrix

has clear computational benefits.

3.3.3 Clustering algorithms

This project makes use of agglomerative hierarchical clustering techniques. Generally, the

procedure for clustering this method is as follows:

Fig. 3.5 – A toy example of a distance matrix.

 19

1. Calculate relevant statistics on the set of objects to be clustered in the form of

vectors.

2. Where N is the number of objects, create a NxN matrix by measuring the distance

between each pair of vectors.

3. Search for the pair which are closest (i.e., has the lowest value) as this is the similar

word pair.

4. Calculate a new distance matrix, replacing the most similar pair with a measurement

which represents the union of them. Thus, the new matrix will be one row and one

column smaller in size.

5. Continue to search for the lowest value and then recalculate until the matrix has

merged into a single cell.

The way in which the distances between clusters are defined, during step 3, is what

distinguishes one clustering algorithm from another (Everitt 1993).

Clustering would be computationally expensive if it were not possible to calculate new

groupings iteratively. Fortunately, it is possible to determine new clusters from the distances

in the previous distance matrix. Lance and Williams (1967) demonstrated that many

clustering algorithms can be derived from a single generalised equation:

QYQXYXQYYQXXQP DDDDDD ,,,,,, −+++= γβαα

where the parameters α, β, and γ correspond to a clustering method. DP,Q is the distance

between clusters P and Q. The cluster Q is the new cluster formed by the merging of

clusters X and Y.

Of the many methods that exist, four were implemented. These are described below.

3.3.3.1 Complete Linkage

Also know as the ‘furthest neighbour’ method since it measures the distance between two

groups as the most distant pair of individual objects, one from each group.

 20

The parameters for complete linkage are: αX = 0.5, αY = 0.5, β = 0 and γ = 0.5. Which gives:

222
,,,,

,
QYQXQYQX

QP

DDDD
D

−
++=

Fig. 3.6 – Diagram illustrating Complete linkage, or ‘furthest neighbour’. The new cluster Q is

formed from combining the two groups X and Y.

3.3.3.2 Group-Average

The group-average method measures distance by taking the average of the distances

between all pairs of individual objects from the two groups.

The parameters for group-average are: αX =
P

X

N
N

, αY =
P

Y

N
N

, β = 0 and γ = 0. Which gives:

P

QYY

P

QXX
QP N

DN

N

DN
D ,,

, +=

NX and NY are the number of objects in the clusters X and Y respectively. Also,

NP = NX + NY

P

D(P,Q)

X

Y

Q

 21

3.3.3.3 Weighted Group-Average

A slightly modified version of the group-average method. This method ignores the size of

the clusters to be grouped in favour of the assumption that they are of equal size. The

reason for this approach is to give smaller clusters a greater influence when grouped with a

much larger cluster.

The parameters for weighted group-average are: αX = 0.5, αY = 0.5, β = 0 and γ = 0. Which

gives:

22
,,

,
QYQX

QP
DD

D +=

3.3.3.4 Ward’s Method

Ward’s method (Ward 1963) differs somewhat from the algorithms described above. The

distance calculated has no real relevance in terms of geometric distance, rather it is a

statistical measurement of the minimal information loss. The method works as follows: the

central point for pairs of clusters is evaluated. The total sum of squared distances from this

central point to all objects in this hypothetical cluster is then calculated. The cluster with the

smallest sum of squares is the new cluster.

Zupan (1982) regarded Ward’s method as “a very efficient clustering method, but favours the

grouping of small clusters.” What he may have thought a potential disadvantage could be

beneficial for the clustering of words.

The parameters for Ward’s method are: αX =
PQ

XQ

N
N

, αY =
PQ

YQ

N
N

, β =
PQ

Q

N
N

− and γ = 0.

Which gives:

PQ

YXQ

PQ

QYYQ

PQ

QXXQ
QP N

DN
N

DN
N

DN
D ,,,

, −+=

Na is the total number of objects in cluster a.

Nab is the combined total of objects in clusters a and b.

 22

3.3.3.5 Other algorithms

Four other algorithms were in fact implemented for this project. They were: Single Linkage,

Median, Centoid and Centre of Gravity. Unfortunately, they performed so poorly for this

particular application that they were not considered in the evaluation.

3.4 Obtaining a corpus

Choosing a corpus should never be a trivial task as they can influence greatly the

performance of a system. For example, if a speech recognition system were being

developed, then it would benefit from a corpus of spoken language to train the system,

rather than any other types. It does not mean that a corpus of written language is not valid,

however, it merely does not reflect the most appropriate usage.

Another important feature of a corpus is its size. The major reason for this is that it combats

the data sparseness problem. A common approach for researchers in the past few years

has been to compile massive corpora by extracting text from USENET newsgroups.

Examples include:

• Hughes (1994) collected 35 million words, of which 30 million were taken from

USENET.

• Finch and Chater (1992) built a 40 million word USENET corpus.

• Lund and Burgess (1996) experimented with a 160 million word USENET corpus.

• Levy and Bullinaria (2001) managed to accumulate a vast 168 million word corpus

from USENET.

Despite the availability of such vast bodies of written text, it may be unwise to rely on them,

and their ever increasing size. If a machine learning system was developed in order to

penetrate the syntax of an unknown language, it may fail if its success depends on analysing

massive samples of that language. In fact, to collect 168 million words in any language

other than English would be not be a trivial task. Corpora of other known languages are not

nearly as plentiful, or as large. USENET cannot be relied upon due to the dominant

language being American-English.

For experimentation with the English language, two corpora were used, both chosen to be

deliberately small (compared to modern day corpora). The first corpus was taken from a

 23

single source; an English translation of Don Quixote de la Mancha by Miguel de Cervantes

(Ormsby 1885). An electronic version was obtained freely from Project Gutenberg4. This

body of text contains 426,700 words, consisting of 16,000 unique tokens. The size of this

corpus, though relatively small, is still adequate to perform the distributional analysis on, and

cluster effectively. The added benefit is that execution time for the whole clustering process

is greatly reduced due to not handling a massive number of words.

The second corpus used was the LOB corpus. It totals one million words, of which there are

approximately 50,000 unique tokens. At over twice the size of the Don Quixote corpus, it

should provide an interesting glimpse at how the size of corpus can affect the end

performance of the clustering process.

The clustering process will not attempt to cluster all of the words in the entire corpus. For

the experiments performed in this work, a limit of the most frequent 500 content words was

set. Such a limit may sound small relative to the number of distinct words in the corpora,

however, if you recall Zipf’s Law from section 2.6, the vast majority of the words in a body of

text can be accounted for from a small percentage of the highest ranked words.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500

Rank

C
ul

m
ul

at
iv

e
Fr

eq
ue

nc
y

(P
er

ce
nt

ag
e

of
 t

ot
al

nu

m
be

r
of

 w
or

ds
 in

 c
or

pu
s) Don Quixote

LOB

Fig. 3.7 – Cumulative frequency graphs plotted for both corpora.

4 An online resource of royalty-free e-texts. http://promo.net/pg/

 24

It can be seen from Fig. 3.7 that the 500 most frequent words for both corpora captures a

high percentage of the total number of words. Indeed, a coverage of 77.1% is attained for

the Don Quixote corpus, and a slightly lower 64.4% for the LOB corpus. Therefore, for the

purposes of any experiments undertaken, only clustering 500 words is acceptable.

For experimentation with an alternative language, Spanish was selected. Acquiring a

relatively small Spanish corpus proved to be straightforward, as an electronic copy of the

original Spanish version of Don Quixote was again obtained courtesy of Project Gutenberg.

An interesting observation with the Spanish Don Quixote is that it is only 383,200 words in

size, with a vocabulary of 24,000 words. This is roughly a difference of 43,000 words

compared to the English translation. Yet, the vocabulary is 8,000 richer than the English

equivalent. The variation in the word count can largely be attributed to the translator’s

preface which totals to over 17,000 words. The rest of the difference illustrates that there is

never a direct one-to-one relationship between words from different languages. In this

example, there are clearly words and phrases in Spanish that cannot be expressed in the

same number of words for their English equivalent.

 25

4 Design and Implementation

This section provides an overview of the software implemented and discusses the design of

the algorithms developed for this project. The set problem was substantial, therefore

implementation of the solution was broken up into smaller, more manageable sub-tasks.

This is not unusual programming practice. The end result is a suite of tools - some of which

are useful on their own – that when used together, perform the clustering as required by the

project.

Fig. 4.1 shows the entire process from the original corpus to the end result. The corpus is

processed by a number of different tools, and the clustering stage comes at the very end of

a relatively long route.

4.1 Segmentation

The main role of this tool is to isolate each word from the raw text of the inputted corpus. To

do this, firstly, (almost) all punctuation is removed, since there is no information to be gained

from keeping it. Secondly, all upper case characters are converted to lower case to rule out

potential problems with case sensitivity.

4.1.1 Punctuation policy

A more detailed description of the way punctuation was dealt with is as follows:

1. Read a ‘word’ (a string delimited by a space) from the input corpus.

2. If the word begins with any punctuation marks, e.g., “ ‘ ([{ , then strip from the word.

3. If the word contains a hyphen or a slash, then the characters either side are

separated into two individual words.

4. If the penultimate character is an apostrophe, then do not remove it. This preserves

two-word contractions such as I’m and don’t .

5. If word ends with punctuation marks, e.g., ? ! , . : ; “ ‘)] } , then strip from the word.

6. Finally, with the resultant word, convert any uppercase letters to lowercase.

 26

Fig. 4.1 – Showing the flow of data through the system and how each tool interacts.

Input

Corpus

Clusters

Distribution

data

Indexed

corpus

Function

Words

Most

frequent

words

Content

words

Pre-

processed

corpus

Segmentation

Cluster

Get distribution

data

Index words Find n most

frequent words

Remove function

words

 27

4.2 Remove function words

This program takes a corpus (pre-processed by the program described above) and a

specified list of function words, then simply works by the following steps:

1. Read in next word.

2. If word is a specified function word then do nothing.

3. Else output word .

Repeat the procedure until all words from corpus have been read. The output from this

program is a corpus of content words, since all the specified function words have been

filtered out. The purpose for this tool may not be entirely obvious, but the output is used by

other tools later in the pipeline that require just the content words of the original corpus.

4.3 Find n most frequent words

This tool, quite plainly, will find the most frequent words in a given body of text. The number

of words required is specified by the user, and the output is a list of words with their absolute

frequency of occurrence within the text, sorted in descending order of frequency (i.e., the

highest frequency first). The program was originally to be written from scratch. Fortunately,

Hughes (1994) described a method of combining a number of core UNIX tools to perform

this task. As a result, the tool written for this project was largely inspired from Hughes’

method to avoid unnecessary reengineering.

By inputting the corpus with function words filtered out, this tool will give the most frequent

content words in the corpus. This is necessary because the entire corpus will not be

clustered, only those that occur often enough as they contain some valuable information.

4.4 Indexing

The use of indexing is purely for efficiency – at least in the context of this project. This tool,

given a list of words to index, will search through a given corpus and record the position of

each occurrence of the specified words.

 28

To illustrate with a toy example on the following sentence: “the cat sat on the mat”.

The above example may not look very impressive, but word indexes have a variety of

applications, including information retrieval in the form of inverted files, and concordance5.

For the purposes of this project, the word index makes the process of gathering the

distributional data of a given word much more efficient.

4.5 Distribution

This is the program that gathers the all-important distribution information – the context

measurement for the subsequent clustering process. For the program to function, it requires

an indexed list of function words, and an indexed list of content words. It then processes

each possible combination of function word and content word in the following manner:

For each content word, c

 For each function word, f

 For each occurrence of c, at position x

 For each occurrence of f, at position y

 If x is inside the window of y then record its relative position

The window refers to the number of words either side of the target word that is to be

considered when recording the occurrences of the target content word. In the examples

used in section 3, the window was ±4.

5 “Comprehensive listing of a given item in a corpus (most often a word or a phrase), also showing its

immediate context.” (Oakes 1998)

Word the cat sat on the mat

Position 1 2 3 4 5 6

Word cat mat on sat the

Index 2 6 4 3 1, 5

Fig. 4.2 – Demonstrating how words are indexed.

 29

Using the word index created in Fig. 4.2, with a window of ±4, let the target function word be

the and target content word be cat.

Relative position -4 -3 -2 -1 1 2 3 4

Freq 0 1 0 0 1 0 0 0

Fig. 4.3 – Collecting distribution data from word indexes.

4.6 Clustering

The clustering program involves a number of important steps. After reading the distribution

data produced from the previous step, it must first convert that data into vectors as

demonstrated in section 3.2. The data from the distribution program is ordered by content

word, and then by function word, which makes creating the function word profile vector for

each content word much simpler.

The distance matrix is created, and each vector is compared using a specified metric. Once

the distance matrix is filled, the clustering using a specified algorithm can commence.

Clustering will continue to group words together until the predetermined number of clusters

is reached.

On completion of the clustering, the clusters are outputted for the user.

4.7 Choice of programming language

The choice of programming language should not alter the actual functionality of the software.

However, it may determine the methodology employed to solve the problem in terms of

design and implementation. The main categories are procedural languages, functional

languages, logical languages and object-orientated languages. C++ was used to implement

the algorithms in this project, which falls somewhere in between a procedural and object

orientated language 6. The pros and cons of each programming language shall not be

discussed here. Needless to say, reasons for its selection include: its ability to cope easily

6 C++ is essentially the procedural language of C, with object-orientated capabilities added on top. To

some, such a recipe leaves C++ unfavourable, to others it is beneficial as it gives the best of both

worlds.

 30

with numerical manipulation; can handle large data structures in memory; execution speed

of C++ code compared other popular languages for NLP such as Perl and POP-11 (due to

their suitability for symbolic manipulation) is considerably quicker since it is compiled into

machine code, rather than run by an interpreter.

 31

5 Experiments

5.1 Factors

The following factors can be experimented with:

• Type of corpus

• Size of the corpus

• Number of function words

• Number of content words to be clustered

• Size of the window

• Metric used

• Clustering algorithm used

• Number of resulting clusters

There is clearly plenty of scope for research into how the above factors affect the overall

performance of the clustering. However, due to time restrictions, only a selection of the

above factors will be investigated.

As discussed in section 3.4, the English corpora for this project are the 427,000 word Don

Quixote text and the one million word LOB corpus. The first two factors will remain static

with these two corpora and their respective sizes. The number of content words will stay

fixed on 500.

5.2 How to evaluate clusters

It is first necessary to describe the method of evaluation in order to understand how the

performance of the clustering was measured. Without a reliable approach, it would not be

possible to quantify the effects of a given factor.

Hughes (1994) outlined an excellent approach to automatically evaluating the clusters his

algorithms produced. He used a pre-tagged LOB corpus, where all words had been

assigned an appropriate part-of-speech. However, the LOB tagset comprises of over 130

separate tags, which was too detailed, therefore, he devised the reduced LOB tagset. This

shrinks the tagset to only 23 parts-of-speech.

 32

Reduced Tag Replaced Tags Type of Item
ADJ J* Adjective
ADV R* Adverb
ART A* Article
CCON CC* Coordinating conjunction
CARD CD* Cardinal numeral
DET DT* PP$* Determiner
EX EX Existential there
EXPL U* Interjection
LET Z* Letter of the alphabet
MD MD Modal auxiliary verb
NEG XNOT Negator
NOUN N* Noun
ORD O* Ordinal numeral
OTH &* Foreign words, formulas
PAST BED DEBZ BEN DOD

HVD HVN VBD VBN
Past tense verb

PREP I* Preposition
PRES BE BEG BEM BER

BEZ DO DOZ HV
HVG HVZ VB VBG
VBZ

Present tense verb

PRON P* (not PP$*) Pronoun
PUNC ! () , . … ; : ? *.. Punctuation
QUAL Q* Qualifier
SCON CS* Subordinating conjunction
TO TO Infinitive marker
WH W* WH-word

Table 5.1 – The reduced LOB tagset. Note * is a wildcard character, e.g., J* means any tag

beginning with the letter J and any letter after.

The automatic approach to evaluate a given cluster works as follows:

1. For each word, lookup in the LOB corpus and find any tags that it has assigned to it

(from the reduced tagset).

2. Determine which is the most common tag for that cluster.

3. Calculate the ratio of the number of words in the cluster that possess the most

common tag, to the total number of words in the cluster. Return as a percentage.

The Don Quixote corpus contains words that do not appear in the tagged LOB corpus. For

any word that does not appear in the LOB corpus, then it is simply assigned “UNK” to

represent that its part-of-speech is unknown.

 33

5.3 Effect of clustering algorithm

It was anticipated that the clustering algorithm would have a profound effect on the eventual

clustering accuracy. Each algorithm behaves differently, therefore it was a reasonable

assumption to make, and was backed up by this experiment: number of clusters = 100;

number of function words = 25; window size = 12.

Algorithm Corpus Metric
Complete
linkage

Group
average

Weighted
group average

Ward's
method

Euclidian 82.2% 86.5% 83.6% 77.2% LOB

Manhattan 80.9% 83.5% 85.6% 77.1%
Euclidian 74.9% 78.2% 77.2% 77.2% Don Quixote
Manhattan 73.9% 84.5% 82.7% 68.7%

Table 5.2 – The effect of the clustering algorithm on the clustering accuracy.

Perhaps more interesting than the varying nature than the algorithms themselves, is the role

that the metric plays. In Fig. 5.1, the effect of the metric is illustrated clearly, and can alter

the performance of the subsequent clustering considerably. There is a difference of 8.5%

between the two metrics when used with Ward’s method. It is not entirely obvious why this

is the case. For the larger LOB corpus, Ward’s method performs almost equally with either

metric. In fact, differences between the metrics are much less pronounced in the LOB

corpus, which suggests that the size of the corpus is influencing the overall performance.

Don Quixote corpus

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Complete linkage Group Average Weighted group
average

Ward's method

C
lu

st
er

in
g

ac
cu

ra
cy

Euclidian

Manhattan

Fig. 5.1 – A graph plotting the effect of the clustering algorithms for the Don Quixote corpus.

 34

Regardless of the metric, overall, Group Average performs the best of the four algorithms

used. Closely followed by Weighted Group Average, Complete linkage and finally Ward’s

method. This order nearly always remains for any given cluster size, number of function

words and window size. There are a few exceptions to the rule, where for example weighted

group average may perform slightly better than group average.

5.4 Effect of number of function words

Due to much of the project revolving around the function words, it makes sense to

investigate the role they play. Fifty function words were selected (see Table 3.1); the n

highest ranking function words were used, and the distribution of the target content words

were profiled against those n words.

The first experiment looked at the relationship between the clustering algorithm employed,

and the number of function words. Fig. 5.2 shows the results for an experiment where:

corpus = Don Quixote; number of clusters = 100; window size =12; metric = Euclidian.

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

5 10 15 20 25 30

Number of function words

C
lu

st
er

in
g

ac
cu

ra
cy

Group Average

Weighted group
average
Complete
linkage
Ward's method

Fig. 5.2 – Graph plotting the relationship between the clustering algorithm and the number of

function words used for the Don Quixote corpus.

 35

There is a trend that suggests the greater the number of function words used, the better the

clustering accuracy. However, it is clearly not a smooth slope. In fact, the relationship is

much more erratic if the corpus is switched to LOB (see Fig. 5.3).

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

5 10 15 20 25 30

Number of function words

C
lu

st
er

in
g

ac
cu

ra
cy

Group Average

Weighted group
average
Complete linkage

Ward's method

Fig. 5.3 - Graph plotting the relationship between the clustering algorithm and the number of

function words used for the LOB corpus.

Focusing on the relationship between the number of function words and the window size are

related. Table 5.3 shows the results from an experiment where: number of clusters = 100;

clustering algorithm = Group Average; metric = Manhattan.

DQ LOB
Window size Window size

Num. of

function words 4 8 12 4 8 12

5 72.0% 73.9% 78.3% 77.0% 79.9% 80.6%
10 72.5% 76.5% 81.7% 80.7% 83.3% 84.7%
15 74.8% 75.5% 81.1% 81.7% 84.4% 86.3%
20 75.8% 77.7% 82.7% 84.1% 85.5% 87.0%
25 75.4% 78.2% 84.5% 83.0% 85.6% 83.5%
30 77.3% 78.1% 83.6% 85.1% 85.5% 86.7%

Table 5.3 – The clustering accuracy for number of function words against the window size.

 36

The results show again that in general, for any window size, the greater the number of

function words used, the better the accuracy. Fig. 5.4 shows the above results for the LOB

corpus in a visual form, to give a better feel of the behaviour. Initially, the performance

increased substantially for each increment of 5 function words, however, it slows down by 20

function words. Performance in fact dips when the number of function words is at 25. The

decline in performance looks worse than it really is from the graph due to the scale of the y-

axis. It is a mere one percent.

LOB corpus

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

5 10 15 20 25 30

Number of function words

C
lu

st
er

in
g

 a
cc

u
ra

cy

4

8

12

Fig. 5.4 – Graph showing how the number of function words affects the clustering accuracy

with respect to the window size used, for the LOB corpus.

Finally, investigating the effect of the number of function words for different numbers of

clusters. Unfortunately, only a weak link was found. As Fig. 5.5 shows (number of clusters

= 100; window size = 12; clustering algorithm = Group Average; metric = Manhattan; corpus

= Don Quixote), performance was rather irregular (even more so with the LOB corpus), thus

a reliable conclusion as to how these two factors behave together cannot yet be obtained. It

does seem to increase as the number of function words increases. The difference between

the performance for five and thirty function words is considerable. However, with so many

peaks and troughs in between, it suggests that the number of resulting clusters has a greater

influence on the overall performance which is why this experiment returns vague results.

 37

Don Quixote corpus

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

5 10 15 20 25 30
Number of function words

C
lu

st
er

in
g

 a
cc

u
ra

cy

60

80

100

LOB corpus

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

5 10 15 20 25 30
Number of function words

C
lu

st
er

in
g

 a
cc

u
ra

cy

60

80

100

Fig. 5.5 – Graphs plotting the relationship between the number of function words and number

of resulting clusters.

 38

5.5 Effect of window size

The effect of varying the window size can be demonstrated from the following experiment, as

shown in Table 5.4, where: Number of clusters = 100; number of function words = 25. The

table is quite large as it shows the different window sizes for each clustering algorithm, with

each metric for both corpora. Looking along each row, it is easy to see that generally, as the

window size increases, the clustering performance improves.

Window size Corpus Metric Algorithm
2 4 6 8 10 12

Complete linkage 71.3% 72.2% 71.8% 73.6% 72.2% 74.9%
Group Average 74.1% 76.0% 77.5% 78.4% 79.2% 78.2%
Weighted group
average 73.5% 75.3% 74.7% 75.6% 76.5% 77.2%

Euclidian

Ward's method 69.8% 69.8% 70.2% 71.6% 70.6% 71.3%
Complete linkage 72.3% 73.9% 74.7% 71.4% 69.9% 73.9%
Group Average 74.7% 75.4% 75.2% 78.2% 79.1% 84.5%
Weighted group
average 75.2% 75.0% 72.7% 76.2% 78.8% 82.7%

D.Q.

Manhattan

Ward's method 70.4% 71.0% 72.4% 70.4% 70.5% 68.7%
Complete linkage 75.4% 77.6% 78.4% 79.3% 80.1% 82.2%
Group Average 81.0% 81.4% 84.2% 85.3% 87.3% 86.5%
Weighted group
average 80.3% 81.1% 83.6% 84.1% 82.8% 83.6%

Euclidian

Ward's method 74.8% 72.7% 77.5% 78.4% 78.3% 77.2%
Complete linkage 80.3% 79.3% 80.1% 80.8% 82.5% 80.9%
Group Average 83.6% 83.0% 83.9% 85.6% 86.7% 83.5%
Weighted group
average 82.7% 83.1% 84.9% 85.2% 82.6% 85.6%

LOB

Manhattan

Ward's method 76.1% 76.6% 78.0% 79.7% 79.6% 77.1%

Table 5.4 – The clustering accuracy for different window sizes.

As with all the factors investigated so far, it is not a steady, linear increase. The change in

accuracy can be uneven. This is depicted more visibly in Fig. 5.6.

5.6 Effect of the number of clusters

This factor was the easiest to predict. At risk of sounding like a scratched record, it was

expected that the greater the number of clusters, the better the clustering accuracy. If the

number of clusters was equal to the number of content words to be clustered, then the

performance of the clustering would be 100% accurate.

 39

Don Quixote corpus

64.0%

66.0%

68.0%

70.0%

72.0%

74.0%

76.0%

78.0%

80.0%

2 4 6 8 10 12

Window size

C
lu

st
er

in
g

 A
cc

u
ra

cy

Group Average

Weighted group
average

Complete
linkage

Ward's method

Fig. 5.6 – The effect of the window size for the different clustering algorithms. (Metric =

Manhattan)

That is because each cluster is simply an individual word and so the method to automatically

evaluate a cluster will always return 100%. Conversely, if the number of resulting clusters

was simply a single cluster, then the accuracy would be very poor. The one cluster contains

all the content words to be clustered, and cannot all be satisfied with a single part-of-speech

that will be assigned to it by the automatic evaluation.

The prediction was confirmed with the following experiment, where: number of function

words = 25; window size = 12; metric = Euclidian. Fig. 5.7 reveals the influence the

resulting number of clusters has, for each of the clustering algorithms used. There is a fairly

linear rise in clustering accuracy as the number of clusters increases.

 40

LOB corpus

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

50 55 60 65 70 75 80 85 90 95 100

Number of clusters

C
lu

st
er

in
g

 a
cc

u
ra

cy

Group Average

Weighted
group average

Complete
linkage

Ward's method

Don Quixote

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

50 55 60 65 70 75 80 85 90 95 100

Number of clusters

C
lu

st
er

in
g

 a
cc

u
ra

cy

Group Average

Weighted group
average
Complete
linkage
Ward's method

Fig. 5.7 – The relationship between number of clusters and clustering algorithm.

5.7 Semantic Clusters

The results gathered so far are only indicative of how well the clustering has performed on a

syntactic level. Judging semantic similarity is not easily quantifiable and is more subjective

than with syntax. Nonetheless, many clusters exhibit groups with semantic similarity.

Interesting examples from the LOB corpus include:

 41

Good examples can also be found in the resulting clusters from the Don Quixote corpus.

Fig. 5.9 – Examples from the Don Quixote corpus of clusters showing similar semantic

properties.

Cluster 58 has grouped together proper nouns that feature in the novel.

5.8 Alternative language

Experimentation with the Spanish corpus was not as comprehensive as with the English

corpora. Emphasis was purposely placed on understanding how the clustering process

worked with English. The motivation for clustering an alternative language is to investigate

whether the described method is non-language specific.

The style of experimentation remained as close to the ones performed on the English

corpora. The first notable difference was the function words. The words listed in Table 3.1

had to be translated into their Spanish equivalent. This was straightforward in itself,

although the translated list was longer due to many words being assigned to a gender.

Cluster 61

dr
miss
mr
sir
mrs
NOUN 100%

Cluster 82

her
his
my
your
herself
him
them
himself
PRON 100%

Cluster 49

committee
council
government
party
development
education
food
water
law
music
NOUN 100%

Fig. 5.8 – Examples from the LOB corpus of clusters showing similar semantic

properties.

Cluster 21

arm
ass
head
horse
sword
armour
mouth
arms
NOUN 100%

Cluster 58

dapple
fernando
panza
toboso
UNK 100%

Cluster 74

eyes
feet
face
hand
words
hands
NOUN 100%

 42

The most significant difference is the method for evaluating the resulting clusters. A large

tagged Spanish corpus comparable in size and detail (in terms of its tagset) to the LOB

corpus was not readily available. A tagged Cuban-Spanish corpus was found though it only

contained approximately 16,000 words, with 3,000 distinct word tokens. Although only 500

words from the Don Quixote corpus were clustered, there were many words that didn’t

feature in the tagged corpus. Therefore, the tagged corpus was manually supplemented

with those missing words, and their parts-of-speech were obtained from Collins Spanish

Dictionary (Sinclair 1998). The tagset used for the corpus was small, and unfortunately did

not differentiate between different types or tenses of verbs.

Tag Type of item

ART Article

ADJ Adjective

ADV Adverb

CCON Conjunction

EXPL Interjection

NOUN Noun

PREP Preposition

PRON Pronoun

VERB Verb

Table 5.5 – The tagset used for the Spanish corpus.

Unsurprisingly, the same properties identified in the English experiments were present in the

Spanish experiments. That is, the window size, number of function words and number of

resulting clusters improves the clustering accuracy. Group Average once again the highest

performing algorithm, and the Manhattan metric consistently outperformed the Euclidian

metric for the experiments carried out. These observations are summarised in Table 5.6.

 43

Number of Clusters Metric Clustering
Algorithm 80 85 90 95 100
Complete
Linkage 74.45% 75.05% 75.70% 76.70% 77.60%
Group Average 81.15% 81.55% 81.93% 82.00% 82.33%
Weighted Group
Average 79.86% 79.72% 80.91% 80.62% 81.06%

Euclidian

Ward’s Method 73.07% 74.45% 74.46% 74.88% 75.63%
Complete
Linkage 74.96% 75.73% 76.32% 76.41% 76.23%
Group Average 84.77% 85.38% 85.38% 85.30% 85.82%
Weighted Group
Average 80.10% 80.37% 81.52% 82.45% 83.31%

Manhattan

Ward’s Method 73.75% 75.16% 75.12% 76.56% 76.87%

Table 5.6 – Summary of results showing the clustering accuracy for the Spanish Don Quixote

corpus.

5.8.1 Semantic Clustering

There were many promising examples of clusters displaying similar semantic properties.

This is encouraging considering the size of the corpus. With the Spanish corpus, it was

comparatively common to find clusters containing the same verb in different tenses. For

example, cluster 68 lists the verb to be in various tenses. Cluster 13 consisted of similar

adjectives, and cluster 86 held nouns of parts of the body.

Fig. 5.10 – Examples of clusters displaying similar semantic properties.

Cluster 13

aquel that (one)
aquella that (one)
esta this
este this
aquellas those
mi my
su his/her
sus his/her
tu your
mil thousand
ADJ 100%

Cluster 86

manos hands
ojos eyes
pies feet
marido husband
NOUN 100%

Cluster 68

era
es
fue
eran
son
eres
sean
VERB 100%

 44

6 Future Work

There is still a great deal that could be done to improve and expand the research undertaken

by this project.

6.1 More experiments

The experiments in section 5 would have benefited greatly if each varying factor could have

been tested more comprehensively. For example, the number of resulting clusters only

ranged from 50 to 100 in increments of 5. It would have been desirable to expand the range

and reduce the size of the increment. Not just for the number of clusters, but for all factors

being investigated. Also, some of the factors remained relatively static throughout the

experimentation. Namely the number of content words to be clustered, but also the type and

size of corpora. These factors also need to be understood.

6.2 Automatically obtaining function words

In order to reduce the dependence of expert linguistic knowledge for the entire clustering

process, the method of obtaining the function words needs to be revised. This process

needs to be automatic. This could simply consist of taking the top n ranking words from a

given corpus and assuming those words are the function words. This could be rather

unpredictable, given that it relies on the type and size of corpus. An example highlighted by

Manning and Schütze (2000) showed the frequency counts of the most common words in

Tom Sawyer by Mark Twain. The 14th most common word was Tom. Such a problem is

normally overcome by using a large corpus, which contain samples from many different

sources. Elliott (2000a and 2000b) has found that function words can be obtained by

combining relatively small samples from at least 3 sources: “Three text samples of a few

thousand words [are] OK, but four is better to filter out the more common content words.”

(Elliott, personal communication)

 45

6.3 Improving the context measure

It is worth exploring the effect of the context measure to see if it can be refined. The context

measurement in this project was the distribution of a target content word against the target

function words. It would be possible to experiment with assigning weights to certain

attributes which are believed to be valuable. For example, the occurrence of a target

content word positioned next to a target function word would be more informative than if the

occurrence was five words away. As a result, a greater emphasis could be placed on words

that appear next to each other. Alternatively, it is worth looking at where they do not occur.

Recalling the example distribution displayed in Fig. 3.1, for ‘in’ and ‘the’. The fact that the

never occurred immediately before in is equally informative (if not more so) than the fact that

the occurs most frequent immediately after in. Of course, this particular approach becomes

less useful for rarer content words; since there are so few occurrences that it would be hasty

to attempt any inference.

6.4 Incremental learning

There is clearly more information that can be extracted from the most frequently occurring

words. As mentioned in the previous paragraph, certain observations can be made about

words which frequently occur together and which ones do not, providing there is enough

evidence to support them. These observations could be relied upon as rules, which would

be much more dependable, than clustering by similarity alone. These rules could be built up

incrementally, to overcome the data sparseness problem, for example, using the two most

frequent words of a given corpus, e.g., the and of.:

1. It will be observed that the never comes immediately before of. As these are the highest

ranked words in the corpus, it can be assumed to be a rule.

2. Then, observing the distribution of the 100 most frequent words of the corpus, all words

that behave similarly to of can be found.

3. If they also never occur immediately after the, then the rule can be altered to:

 ‘Words that cluster with of never occur immediately after the’, or ‘Prepositions never follow

the’.

 46

4. If words that cluster with the are found to behave similarly, then the amended rule would

be: ‘Words that cluster with the are never followed immediately by words that cluster with of’,

or ‘Prepositions never follow determiners’.

By comparing how a word behaves with a given word class, rather than another word, data

sparseness is reduced, and should allow more accurate clustering for rarer words.

6.5 Other languages

The use of a second language to investigate the performance of the clustering techniques

described in this report returned positive results. It confirmed the theory that clustering

algorithms should not be troubled with another language – it is an unsupervised process and

does not require prior knowledge of the language to be clustered. However, different

languages can vary greatly in their behaviour. Manning and Schütze (2000) mention that the

English language lends itself more favourably for inferring part-of-speech from its position,

compared to other languages. “In many other languages, word order is much freer, and the

surrounding words will contribute much less information about part of speech.” Therefore,

more thorough experimentation needs to be carried out. Obtaining better resources will be

essential. A larger corpus would be beneficial, as too would be a larger tagged corpus for

more reliable evaluations.

There is no reason to limit this technique to human languages. Potentially NLL techniques

could be applied identify features in other ‘language-like’ datasets, such as birdsong, signals

from dolphins and whales etc. Also there is the potential to search through sequences of

DNA to seek patterns automatically.

 47

7 Conclusions

7.1 Review

The aim of the project was to investigate an approach to automatically acquire word

classification. After reviewing many methods for tagging, a clustering approach was adopted

due to its appropriateness for tasks that need to be unsupervised. The context

measurement was decided to be the relative distribution of a target content word against the

most frequent function words. An algorithm was implemented that could extract this

distributional information from an inputted corpus. This data was converted in a vector that

represented the distribution of the content word and placed into a high-dimensional vector

space. A variety of metrics and clustering algorithms were implemented which could made

use of the populated vector space, created a distance matrix which then established which

words were similar.

A tool was developed to automatically evaluate the clusters that were produced by the

clustering process. Such a tool proved to be essential due to the number of experiments

that were performed. For the English language:

Factor Number Values

Number of corpora 2 LOB and Don Quixote

Number of cluster sizes 11 55 – 100 in increments of 5

Number of function words

used

6 5 – 30 in increments of 5

Number of window sizes 6 2 – 12 in increments of 2

Number of metrics 2 Euclidian and Manhattan

Number of clustering

algorithms7

8 Single linkage, Complete linkage, Group

average, Weighted group average, Median,

Centoid, Centre of gravity, Ward’s Method

The total number of experiments = 2 x 11 x 6 x 6 x 2 x 8 = 12,672.

(The number of Spanish experiments only totalled to 480)

7 As mentioned in section 3.3.3, eight algorithms were originally implemented, but four performed

unsatisfactorily and so not considered in any evaluation for the experiments. However, they still had

to be run in order to discover their lack of suitability to this particular problem.

 48

7.2 Experimental findings

With regards to investigation with English corpora:

• Clustering accuracy was higher for the LOB corpus by a mean average of 6.5%.

This was expected due to the LOB corpus being over twice the size as Don Quixote.

Of course, the two corpora are quite different in style, so a direct comparison is not

appropriate.

• The best clustering algorithm was found to be Group Average from the automatic

evaluation for both corpora.

• The metric had varying success – its effect was dependent on other factors, e.g., the

algorithm used, and the corpus too. Overall, Manhattan performed better with the

smaller Don Quixote corpus, and Euclidian worked better with the LOB corpus. Lund

and Burgess (1996) and Hughes (1994) both found Manhattan produced the better

results, which fits Shepard’s (1980) theory that lower values for m in Minkowski’s

general distance equation, are more suitable for extracting semantic information.

• The clustering performance improved as the number of function words used was

increased.

• Clustering accuracy was generally enhanced as the window size increased. This is

likely to be due to the fact that the maximum function word separation is eight words,

as observed by Elliott (2000a). This means that for any content word, there will

always be a function word no greater than ±4 words (equivalent to a window size of

eight).

• The number of resulting clusters had a great influence on the effectiveness of the

clustering. The greater the number of clusters, the better the performance. As

discussed however, it is important to find the right balance between the number of

content words being clustered and the resulting number of clusters. There is little

information to be gained when the number of clusters is close to either extreme (i.e.,

very small or close to the number of content words).

• Even with the small Don Quixote corpus, the highest accuracy of the clusters

managed to reach 84.7%. With the LOB corpus, an accuracy of 87.8%.

• Good evidence of semantic clustering was found for both corpora. Even words such

as ‘a’ and ‘an’ which could potentially cause trouble (since the words that follow

 49

immediately after are mutually exclusive) were grouped together within the same

cluster.

The clustering techniques also showed promising results when the Spanish Don Quixote

corpus was used. Although the tagged corpus was relatively small, as too was the tagset, it

was still adequate for the preliminary studies into the effectiveness of clustering an

alternative language. An accuracy of 85.8% was achieved and semantic groups were

frequent in the resulting clusters. This shows that the function word profiles were an

effective context measure.

The experimental findings indicate that the method proposed by this report is a feasible way

for automatically acquiring word classification. A high degree of success was accomplished

even with comparatively small corpora. Admittedly, stronger semantic clustering was found

in the larger LOB corpus, and can be found in other experiments involving vast corpora (see

section 3.4).

Appendix D gives a sample output of the clustering software where:

• corpus: LOB

• clustering algorithm: Complete Linkage

• metric: Manhattan

• number of resulting clusters: 100

• number of function words: 25

• window size: 12

 50

References

(Atwell 1987) Eric Steven Atwell. A Parsing Expert System which Learns from Corpus

Analysis. In Willem Meijs (ed) - Corpus Linguistics and Beyond: Proceedings

of the ICAME 7th International Conference on English Language Research on

Computational Corpora, pp227-235, Amsterdam, Rodopi. 1987.

(Atwell and Drakos 1987) Eric Steven Atwell and Nikos Drakos. Pattern Recognition

Applied to the Acquisition of a Grammatical Classification System from

Unrestricted English Text. In Bente Maegaard (ed) - Proceedings of the Third

Conference of European Chapter of the Association for Computational

Linguistics, pp56-63, New Jersey, Association for Computational Linguistics.

1987.

(Baker 1975) J.K. Baker. Stochastic Modelling for Automatic Speech Understanding. In D.R.

Reddy (Ed) - Speech Recognition. Academic Press. New York. 1975.

(Baker 1979) J.K. Baker. Trainable grammars for speech recognition. In D.H. Klatt and J.J.

Wolf (Eds) - Speech communication papers for the 97th meeting of acoustical

society of America, pp547-550. 1979

(Chomsky 1957) Noam Chomsky. Syntactic Structures. The Hague: Mouton. 1957.

(Chomsky 1964) Noam Chomsky. Current Issues in Linguistic Theory. The Hague:

Mouton. 1964

(Church 1988) K. W. Church. A stochastic parts program and noun phrase parser for

unrestricted text. In Second Conference on Applied Natural Language

Processing, pp. 136-143. ACL. 1988.

(Cutting et al. 1992) D. Cutting, J. Kupiec, J. O. Pedersen and P. Sibun. A Practical part-

of-speech tagger. In Third Conference on Applied Natural Language

Processing, pp. 133-140. ACL. 1992.

 51

(Dempster et al. 1977) A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society, 39(1), 1-21. 1977.

(Elliott et al. 2000a) J. Elliott, E. Atwell and W. Whyte. Increasing Our Ignorance of

Language: Identifying language Structure In An Unknown Signal. In:

Proceedings of 4th International Conference on Computational Natural

Language Learning, pp 25-30. Association of Computational Linguistics. New

Jersey. 2000.

(Elliott et al. 2000b) J. Elliott, E. Atwell and W. Whyte. Language identification in unknown

signals. In Proceeding of COLING'2000, 18th International Conference on

Computational Linguistics, pp1021-1026, Association for Computational

Linguistics (ACL) and Morgan Kaufmann Publishers, San Francisco. ISBN: 1-

55860-717-X (2 volumes). 2000.

(Everitt 1993) B. Everitt. Cluster Analysis (3rd Edition). Edward Arnold, London. 1993.

(Finch and Chater 1992) S. Finch and N. Chater. Bootstrapping syntactic categories. In

Proceedings of the 14th Annual Meeting of the Cognitive Science Society, pp

820-825. Hillsdale, New Jersey. 1992.

(Francis 1979) W. N. Francis. A tagged corpus – problems and prospects. In S.

Greenbaum, G. Leech and J. Svartvik (Eds). Studies in English linguistic for

Randolph Quirk, pp 192-209. Longman, London and New York. 1979.

(Francis and Kucera 1982) W. N. Francis and H. Kucera. Frequency Analysis of English

Usage. Houghton Mifflin, Boston. 1982.

(Francis and Kucera 1989) W. N. Francis and H. Kucera Manual of Information to

Accompany a Standard Corpus of Present-Day Edited American English, for

use with Digital Computers (Corrected and Revised edition). Department of

Linguistics, Brown University, Providence, Rhode Island. 1989.

(Garside 1987) R. Garside. The CLAWS word tagging system . In R. Garside, G.

Leech and G. Sampson (Eds), The Computational Analysis of English, pp.

30-41. Longman, London. 1987.

 52

(Garside et al. 1997) R. Garside, G. Leech and A. McEnery. Corpus Annotation. Longman,

London and New York. 1997.

(Greene and Rubin 1971) B. B. Greene and G. M. Rubin. Automatic grammatical tagging

of English. Department of Linguistics, Brown University, Providence, Rhode

Island. 1971.

(Harris 1962) S. Z. Harris. String Analysis of Sentence Structure. Mouton, The Hague. 1962.

(Haslerud and Stenström 1995) V. Haslerud and Anna-Brita Stenström. The Bergen

Corpus of London Teenager Language (COLT). In G. Leech, G. Myers & J.

Thomas (eds.). Spoken English on computer. London: Longman, 235–242.

1995.

(Hughes 1994) John Hughes. Automatically Acquiring a Classification of Words. PhD

Thesis. School of Computer Studies, University of Leeds. 1994.

(Johansson et al. 1986) S. J. Johansson, E. S. Atwell, R. Garside and G. Leech. The

tagged LOB Corpus. Users’ manual. The Norwegian Centre for the

Humanities, Bergen. 1986.

(Jurafsky and Martin 2000) Daniel Jurafsky and James H. Martin. Speech and Language

Processing. Prentice Hall. New Jersey. 2000.

(Kiss 1972) G. R. Kiss. Grammatical Word Classes: A Learning Process and its

Simulation. Psychology of Learning and Motivation. 7. pp1-41. 1972.

(Klein and Simmons 1963) S. Klein and R. F. Simmons. A computational approach to

grammatical coding of English words. Journal of the Association for

Computing Machinery, 10(3), 334-347. 1963.

(Kucera and Francis 1967) H. Kucera and W.H. Francis. Computational analysis of

present-day American English. Brown University Press, Providence, Rhode

Island. 1967.

 53

(Lance and Williams 1967) G.N. Lance and W.T. Willams. A General theory of

classification sorting strategies. 1. Hierarchical Systems, Comp. J., 9, pp373-

380. 1967

(Leech 1993) G. Leech. 100 Million Words of English: The British National Corpus (BNC)

Project. English Today. 1993.

(Leech et al. 1994) G. Leech, R. Garside and M. Bryant. Claws4: The tagging of the

British National Corpus. In COLING-94, Kyoto, pp. 622-628. 1994.

(Levy and Bullinaria 2001) J.P. Levy and J.A. Bullinaria. Learning Lexical Properties from

Word Usage Patterns: Which Context Words Should be Used? In: R.F.

French & J.P. Sougne (Eds) - Connectionist Models of Learning,

Development and Evolution: Proceedings of the Sixth Neural Computation

and Psychology Workshop, 273-282. London: Springer. 2001.

(Lund and Burgess 1996) K. Lund and C. Burgess, Producing high-dimensional semantic

spaces from lexical cooccurrence, Behavior Research Method, Instruments, &

Computers 28(2), pp 203-208. 1996

(Manning and Schütze 2000) C.D. Manning and H. Schütze. Foundations of Statistical

Natural Language Processing. The MIT Press. Cambridge, Massachusetts.

2000.

(Marcus et al. 1993) M. P. Marcus, B. Santorini and M. A. Marcinkiewicz. Building a large

annotated corpus of English: The Penn treebank. Computational Linguistics,

19(2), 313-330. 1993.

(Marshall 1983) I. Marshall. Choice of grammatical word-class without global syntactic

analysis: Tagging words in the LOB corpus. Computers and the Humanities,

17, 139-150. 1983.

(Merialdo 1994) B. Merialdo. Tagging English text with a probabilistic model.

Computational Linguistics, 20(2), 155-172. 1994.

(Oakes 1998) M. P. Oakes. Statistics for Corpus Linguistics. Edinburgh University Press.

1998.

 54

(Ormsby 1885) Miguel De Cervantes. Don Quixote de la Mancha. 1665. Trans. John

Ormsby. 1885.

(Redington et al. 1998) Martin Redington, Nick Chater and Steven Finch. Distributional

Information: A Powerful Cue for Acquiring Syntactic Categories. Cognitive

Science, Vol 22 (4), pp 425-469. Cognitive Science Society. 1998

(Shepard 1980) Roger N. Shepard. Multidimensional scaling, tree-fitting, and

clustering. Science, 210, pp390-398. 1980.

(Simpson and Weiner 1989) J. A. Simpson and E. S. C. Weiner (ed). Oxford English

Dictionary. 2nd ed. Oxford: Clarendon Press, 1989

(Sinclair 1987) J. Sinclair. Looking Up: An Account of the COBUILD Project in Lexical

Computing. Collins, Glasgow. 1987.

(Sinclair 1998) L. Sinclair (ed). Collins Spanish Dictionary, Plus Grammar.

HarperCollins, Glasgow. 1998.

(Stolz et al. 1965) W. S Stolz, P. H. . Tannenbaum and F. V. Carstensen. A Stochastic

approach to the grammatical coding of English. Communications of the ACM,

8(6), 399-405. 1965.

(Svartvik 1990) Jan Svartvik (ed). The London-Lund Corpus of Spoken English:

Description and Research. Lund University Press, Lund, Sweden. 1990.

(Taylor and Knowles 1988) L.J. Taylor and G Knowles. Manual of Information to

Accompany the SEC Corpus: The machine readable corpus of spoken

English. University of Lancaster. 1988.

(Ward 1963) J. H. Ward. Hierarchical Grouping to Optimize an Objective Function.

Springer-Verlag, Berlin. 1963.

(Zipf 1949) G.K. Zipf. Human Behaviour and the Principle of Least Effort. Addison Wesley

Press. New York. 1949.

 55

(Zupan 1982) Jure Zupan. Clustering of Large Data Sets. John Wiley and Sons, Chichester.

1982.

 56

Appendix A – Reflection on project experience

The final year project was like no other piece of assessed work required during my

computing degree. No prior coursework was of a comparable scale of effort. As a result, I

was very much unprepared when approaching my project.

My first piece of advice for any student is to select a project that you are actually interested

in. Of course, the project is a compulsory component of the degree, however, if you can

make it more than just a project done for the sake of it, then you will benefit in the long run. I

was excited when I began my research. As a result, I have enjoyed my area of study so

much that I have altered my career plans in order to stay at the university to do a PhD! It is

an excellent opportunity to study a topic that you want.

Your project supervisor will be the most important person in ensuring success with your

project. Absorb as much advice as you can. Yet, students should feel free to seek advice

from other members of staff within the department. For projects in the field of NLP,

resources are not always easy to obtain, e.g., tagged corpora are not freely available.

Therefore, maintain a good rapport with the academics who can assist you in acquiring

resources you may need.

For any research project, it is easy to carried away since there is often no limit to what you

can investigate for a given topic. Therefore, focus on the core objectives only. Try to define

the scope of your project to ensure you do not start going off on a tangent. My personal

experience was that I took on more than was required. I experimented with too many factors

when I should have honed in on a small selection and performed comprehensive tests on

just those. It is a difficult thing to gauge since you are unlikely to have undertaken a project

this large. Therefore, seek advice from your supervisor regarding this issue.

A comprehensive literature review is essential for whatever topic you research. However, it

may be worthwhile to perform a software review. A number of tools I personally

implemented for my project were re-engineering software already freely available. I simply

was not aware of their existence at the time. Thus, I sacrificed a great deal of time writing

code which could have been better spent on other areas of the project. The three rules for a

successful project are: 1) time management 2) time management and 3) time management!

 57

Appendix B – Discussion paper by Bill Whyte and John Elliott

I am proposing a method which I hope will firstly identify a set of 'word classes' broadly
equivalent to parts of speech, and secondly, act as the beginnings of a novel part-of-speech
tagger. The initial motivation is as a way of detecting structural features in completely
unknown language-like strings.

We have a table with rows headed by function words, typically 10-30 (only 5 shown for
simplicity)

Fn words ->
Content
wrds

|
v

Fn1 Fn2 Fn3 Fn4 Fn5

and a largish number of common, content words, selected from the test corpora, listed in the
first column.

We would like to able to (but probably can't without a bit more fiddling - see later) create a
row of numbers, each of value from 1-4 (say) for each content word. Each number
represents the separation between the content word and a function word.
(NOTE: we need to do this for the cases where the content word precedes the function word
and where it follows it, but I'm keeping it simple for the time being).
So, we can define and enumerate a 'relation' between content word PARROT and the set of
function words {Fi} e.g. PARROT{ the, of, a, in …..} = {1,3,1,2…….}

OUR BIG HYPOTHESIS: is that if we can calculate enough complete relations for enough
words, then we'll have got enough examples for every important class of words (i.e. parts of
speech, sort of) AND we shall see that the relations for individual words will cluster into
distinct groups AND it will be possible to use simple clustering techniques which do not rely
on the complex statistics of word position.

A SIMPLIFICATION: for various reasons, I suggest we try to 'collapse' the behaviour of
relations for individual words: the relation for content word 'parrot' with respect to function
word 'the' in the phrase 'the green parrot' has value 2 ('green' comes in between them.) but
value 1, in the phrase 'the parrot'. The recommendation is, 'for any relation between a word
and a specific fn word, use the smallest value that occurs for any instance of that word. This
would seem reasonable, will reduce data processing and I think it will actually help with the
cluster analysis. Note that we are thereby using 'closest approach to Fi' as a discriminating
feature.

IF EVERYTHING GOES WELL (but it won't): then we end up with a reasonable number, say
a few hundred (it needs to that for statistical accuracy), complete relations, i.e. a complete
set of values for the minimum separation between each of our content words and every one
of the function words.

 58

I'm quite hopeful, in this case, that we will have a number of relations that have the same
values in them and that the words they relate to will quite reasonably be describable as
belonging to the same class. I even reckon there is a good chance that 'class' may be
roughly equivalent to 'part of speech' in the trad sense. So, simply choose the first half dozen
or so distinct relationships as being word class discriminators.

THE BIG PROBLEM: I see one particularly large problem (plus some others, e.g. polysemy,
which I won't go into) - quite simply, we won't be able to get a complete set of relation values.
Remember, we need to seek out lots of occurrences of a lot of content words where each of
them is within 3 or 4 of each function word. (If they ever are). AND, if we don't get the
minimal values for each of these distances, then our data is corrupted.

A POSSIBLE APPROACH TO A SOLUTION: firstly, remember that it doesn't matter which
content words we use specifically. As long as we have enough text, we can hunt around for
possible solutions for any one word but give up if it's looking bleak and simply choose
another one. Secondly, a more complex approach might be to tentatively decide that two
words are likely to belong to the same word-class, on the basis of a shared similarity
between their (incomplete) relations and some additional tests (see next para) and allow
each one to inherit the missing bits from each other.
So, how do we 'confirm' one of these tentative equivalences? Let's remember that, for any
one content word, we will probably have acquired a number of non-closest approaches (the
GREEN parrot, the VERY LARGE parrot etc). We may also have acquired similar for the
other content word that we think might be of the same class, eg. 'the RED dog', 'the LARGE
dog' etc. Suppose, instead of throwing these examples away in favour of minimals 'the
parrot', 'the dog', we keep them stored. Now, suppose we tentatively associate 'parrot' and
'dog' in the same word class, on the basis of part of their relations being the same, for
example they both have {… ….the…..} = {……1……}. [In practice, we'd need more
similarity]. We now further test the probability of the association by looking at the stored
data :

Fn words ->
Content
wrds

|
v

Fn1 Fn2 THE Fn4 Fn5

DOG Minimal =1

Non-mins:
Red
Large

PARROT Minimal =1

Non-mins:
Green
Very large

We see they both have 'large' at distance 1. Therefore, it's looking a bit more probable that
they are of same class. We can do more than this. Suppose we explore the relations for 'red'
and for 'green' wrt the function words. If we get a reasonably high correlation, even on partial
relations, then this is further evidence.

 59

RULES AND HEURISTICS: we see that the algorithm has a clearly defined part, that is the
getting of 'easy' minimals directly and a less clearly defined part which is going to involve a
bit of trial and error including some heuristics for back-tracking when the approaches in the
previous para conflict on their categorisation of a specific word. One hopeful point is that we
don't have to process every word to its end. We are only after a sufficient number and range
of successful words. Therefore, we may be able simply to throw away examples that are
looking doubtful or ambiguous.

COMPUTATIONAL ASPECTS
Suggest that the corpora are stored in a couple of ways that might speed up computation
significantly. First of all, a simple two dimensional list of word against left-right, top down
order. E.g.
If total corpus is Here is a dog. It is called spot, then list is simply:
1 2 3 4 5 6 7 8
here is a dog its name is Spot
(In practice, we need to think about punctuation).

Secondly, index the words alphabetically and against serial position:

A dog here is its name Spot
3 4 1 2,7 5 6 8

An additional list with the function words in this way might also be useful.
If this indexing is done before the rest of the processing, it may make it much quicker to find
repeated occurrences and to allow backtracking.

 60

Appendix C – The LOB corpus tagset

Tag Description Examples
&FO formula 10*:-1**: dE *:238**:U a*;n**; T*:-3/2**: E*;p**;(P)

R*?8r(cdE.cde) ... [See note 1]
&FW foreign word de Welt von Retour Flamme route Musique Ancienne Pro

unheimliche Opus baraka Biennale Internationale Novum
sine die cantabile letzt bru"cke ...

! exclamation mark !
(opening parenthesis (
) closing parenthesis)
*' opening quotation mark *' *" [See note 2]
**' closing quotation mark **' **" [See note 2]
*- dash *- [See note 2]
, comma ,
. full stop .

... ellipsis ...
: colon :
; semicolon ;
? question mark ?

ABL determiner/pronoun, pre-
qualifier

such quite rather such-and-such

ABN determiner/pronoun, pre-
quantifier

all half

ABX determiner/pronoun, double
conjunction or pre-quantifier

both

AP determiner/pronoun, post-
determiner

more most last several next own other many much same
less former only very few fewer latter least overmuch ain

kast
AP" determiner/pronoun, post-

determiner, ditto
few good many little [See note 3]

AP$ determiner/pronoun, post-
determiner, genitive

latter's former's other's

APS determiner/pronoun, post-
determiner, plural

others

APS$ determiner/pronoun, post-
determiner, plural, genitive

others'

AT article, singular a an every
ATI article, singular or plural the no nae ye zee de ze
BE verb "to be", infinitive or

imperitive
be

BED verb "to be", past tense, 2nd
person singular or all

persons plural

were

BEDZ verb "to be", past tense, 1st
and 3rd person singular

was

BEG verb "to be", present
participle or gerund

being

BEM verb "to be", present tense,
1st person singular

am 'm

BEN verb "to be", past participle been
BER verb "to be", present tense,

2nd person singular or all
persons plural

are 're art 'rt ai

BEZ verb "to be", present tense,
3rd person singular

is 's iss ees ai

CC conjunction, coordinating and but or nor as & yet / 'n and/or an' only n'
CC" conjunction, coordinating, well as

 61

ditto
CD numeral, cardinal 1958 13 two 280,000 20 1959 28.5 400 eight 2 1949 six

seven ten 1,400 16 9.40 five 100 four fifty 89 5.30 287
million 1/2 2.35 forty nine 6.55 ...

CD$ numeral, cardinal, genitive 8's 3's 5's 4's
CD-CD numeral, cardinal,

hyphenated pair
1955-6 15-20 1861-1940 1-6 2-0 3-1 33-1 12-1 300-400 0-3

10,000-15,000 1611-1961 six-five 51.1-3 280-338/39 ...
CD1 numeral, cardinal, one one 1 'un

CD1$ numeral, cardinal, one,
genitive

one's 1's

CD1S numeral, cardinal, one,
plural

ones 'uns

CDS numeral, cardinal, plural hundreds thousands dozens fifties two-thirds millions 1830's
'30s forties middle-thirties sevens '20s 30's 1750s 'forties

nines five-sixths zeros ...
CS conjunction, subordinating though that as while if because before than since whether

for once except until provided unless although even lest now
till such so but albeit whereas in considering nisi like whilst

'n whereupon save altho' tho' directly 'cos 'cause
immediately

CS" conjunction, subordinating,
ditto

if that as though so far order

DO verb "to do", uninflected
present tense, infinitive or

imperitive

do

DOD verb "to do", past tense did
DOZ verb "to do", present tense,

3rd person singular
does doth

DT determiner/pronoun,
singular

another this that each zis zat anudder

DT$ determiner/pronoun,
singular, genitive

another's

DTI determiner/pronoun,
singular or plural

any some enough

DTS determiner/pronoun, plural these those
DTX determiner, pronoun or

double conjuction
either neither

EX existential there there
HV verb "to have", uninflected

present tense, infinitive or
imperitive

have 've hast of 'ave

HVD verb "to have, past tense had 'd
HVG verb "to have", present

participle or gerund
having havin'

HVN verb "to have", past
participle

had

HVZ verb "to have", present
tense, 3rd person singular

has 's hath ai

IN preposition by from at of on for into since in to with despite round as
about over without towards behind during under beyond

after because against outside including among like apart ...
IN" preposition, ditto of from spite with to front as for means opposed top between

against la regards board versus
JJ adjective large likely out-dated adequate nationalist federal united

national elected colonial full proposed secret central final
unsatisfactory gross unconstitutional angry human heavy

hostile economic monstrous warm-hearted ...
JJ" adjective, ditto up off luxe round cut weight priori hoc vires lived board

fashioned

 62

JJB adjective, attributive-only left-wing rival chief overall main once-and-for-all prime past
nuclear-disarming anti-apartheid American-born built-in 89-

year-old joint pro-communist centre second-row top ...
JJB" adjective, attributive-only,

ditto
army called

JJR adjective, comparative higher better worse easier wider tougher lesser nicer fairer
worthier prettier neater noisier deeper happier nobler nearer

slower bolder shallower faster-moving ...
JJR" adjective, comparative, ditto wearing
JJT adjective, superlative best fiercest bitterest largest toughest thorniest rarest

humblest freshest sweetest clearest best-regulated kindest
simplest-of-all handsomest strangest tallest ...

JJT" adjective, superlative selling
JNP adjective, word-initial capital African British Rhodesian anti-Negro German Manchu-

Edwardian Yugoslav Asian Congolese inter-African Nazi
Olympic Ritzy Anglo-American Persian Elizabethan Teutonic
un-Italian Marxist Ritzy Norman Viking Luddite Presbyterian

Churchillian Orwellian Kentish ...
MD modal auxillary may will should would can must might could need 'll shall 'd

ought wilt mayest dared maun cou'd dare shoud shoulda 'ud
wikk

NC cited word many thanks Jimmy ret -key s nonsense Directors'
emoluments always only high decadent mouse sous Gita

Ghita explode ...
NN noun, singular, common life move bill existence institution sentiment abolition

independence association bureau investigation service post
present spot sum drain answer rejection blow taxation ...

NN" noun, singular, common,
ditto

mortem blanche d'oeuvre douloureux garde d'hotel how up
obscura hoccery d'affaires pectoris grata ego between

NN$ noun, singular, common,
genitive

protectorate's labour's doctor's parliament's man's child's
hour's airliner's week's conference's regiment's unit's pilot's

orchestra's river's library's ...
NNP noun, singular, common,

word-initial capital
Chinese Irishman American Australian Negress English
Scottish Briton Vansittartism Sinhalese Jew Whitgiftian

Berliner Gaitskellism Jesuit Lancastrian Belgian
Augustinianism Amorite Anabaptist Druze Celt Rugbeian

Highlander ...
NNP$ noun, singular, common,

word-initial capital, genitive
Englishman's Russian's Greek's Hungarian's Eskimo's
Genoese's Turk's Frenchman's Prussian's Corsican's

Canadian's ...
NNPS noun, plural, common, word-

initial capital
Africans Americans French Germans Nazis Arabs Anglo-
Saxons Scandinavians Romans Pan-Somalis Berliners

Ceylonese Cestrians Wearsiders Czechs Hessians
Victoriana Dalmatians Brownists Bantu Kelts Slavs Medes

Hindoos ...
NNPS$ noun, plural, common, word-

initial capital, genitive
Germans' Tunisians' Americans' Africans' Nyasalanders'

Spaniards'
NNS noun, plural, common peers nominees steps plans discussions organisations

drugs conditions opponents details cuts changes foods
families deeds words supplies measures police cars

demonstrators ...
NNS" noun, plural, common, ditto d'appui ups
NNS$ noun, plural, common,

genitive
settlers' neutrals' years' pro-communists' nightingales'

players' footballers' sportsmen's officers' women's staffs'
contributors' employers' hairdressers' breeders' ...

NNU noun, abbreviated unit of
measurement

\0s \0min \0mph \0d \0in \0p.c \0lb *+1,755million *+900,000
*+3,607,000 *+2 *+720 ... [See note 4]

NNU" noun, abbreviated unit of
measurement, ditto

\0cent cent \0yd [See note 4]

 63

NNUS noun, abbreviated unit of
measurement, plural

\0pts \0yds \0gns *+s \0pp \0mins \0hrs \0revs \0galls \0lbs
\0ins [See note 4]

NP noun, singular, proper Trevor Williams Michael Manchester Foot-Griffiths Bell
Karen Roy Dennis Welensky Rhodesia Nkumbula Macleod

Julius Accra Ellender Adenauer George Enoch France
Corell-Barnes Selwyn ...

NP$ noun, singular, proper,
genitive

Cheung's Griffith's Oxford's England's Guy's Swansea's
Conroy's Zealand's Kent's London's Reid's Margaret's

Windsor's Chatterley's Nancy's Sibelius's Shakespeare's
Khruschev's ...

NPL noun, singular, locative,
word-initial capital

House Sea Hotel Airport Square Plain Island Palace Loch
Cape Town River Gallery Yard Cove Park University Parade

Mount Head Fountain Colliery Shipyard Citadel ...
NPL$ noun, singular, locative,

word-initial capital, genitive
City's Garden's Moor's Theatre's Church's Marsh's College's

NPLS noun, plural, locative, word-
initial capital

Plains Locks Cottages Hills Colleges Universities Schools
Churches Sands Galleries Marshes Downs Grottos Islands
Isles Farms Pikes Roads Straits Broads Mountains Steps
Levels Meadows Precincts Fields Counties Halls Buildings

Gardens Galeries Woods Fens Towers Prisons Banks
Moors Villages

NPLS$ noun, plural, locative, word-
initial capital, genitive

Universities'

NPS noun, plural, proper Maritimes Wolves Barbarians Wasps Alps Penguins
Brittains Debenhams Beechams Bents Mitchells Courtaulds
Salems Spurs Wileys Balkans Lennons Greyfaces Tele-Bins

Loyals ...
NPS$ noun, plural, proper, genitive Bents' Cortaulds' Spurs' Wolves' Josephs' Rovers' Mudlarks'

Beddises' Loyals' Shadows' Merwes' Caxtons' Marshams'
Barkers' Frys' Slaytons' Stevens' Apaches' Pentlands'

Cadwells' Swansons' Robertsons'
NPT noun, singular, titular, word-

initial capital
\0Mr \0MP Sir Premier Secretary Prime Minister President

Senator \0Dr Prince \0St \0Pres Professor Herr \0Mrs
\0C.I.G.S Rector \0P.C \0Hon \0Det.-Con \0D.C \0D \0PC

\0Chief-Insp ... [See note 4]
NPT" noun, singular, titular, word-

initial capital, ditto
\0P

NPT$ noun, singular, titular, word-
initial capital, genitive

President's Minister's Premier's Queen's Princess's Duke's
King's Ambassador's Earl's Chancellor's Regent's Director's
Lord's Pope's Registrar's Emperor's Lady's Laird's Vicar's

Commander's Captain's Ma's Rector's Prince's General's ...
NPTS noun, plural, titular, word-

initial capital
\0MPs Lords Chiefs Ministers Comrades \0M.P.s Premiers
Deans Representatives Saints Presidents Commandants

Sons \0Messrs \0Clrs Mayors Aldermen Ambassadors
Directors \0M.P.'s Tsars Emperors \0C.O.'s Rabbis Masters

Knights Kings Brothers ...
NPTS$ noun, plural, titular, word-

initial capital, genitive
Speakers' \0MPs' Sons' Directors'

NR noun, singular, adverbial tomorrow today yesterday south February Monday home
July tonight Sunday north October September December

January west east March \0Nov Wednesday to-night south-
east Tuesday August Saturday May June to-day \0Feb April

north-west \0W ...
NR$ noun, singular, adverbial,

genitive
today's yesterday's to-night's Wednesday's to-morrow's

west's Sunday's Saturday's tonight's Monday's tomorrow's
home's

NRS noun, plural, adverbial homes Saturdays Tuesdays Mondays Sundays Fridays
Thursdays

NRS$ noun, plural, adverbial, [See note 5]

 64

genitive
OD numeral, ordinal second first third thirty-ninth fourth sixth seventh 75th 19th

3rd 4th 6th 2nd twentieth 1,000th 44th fifteenth ...
OD$ numeral, ordinal, genitive [See note 5]
PN pronoun, nominal so anybody nothing no anyone none everything something

anything nobody someone everybody somebody no-one
some nuffin' ought somethin' nothin' summat nossings

somep'n
PN" pronoun, nominal, ditto one
PN$ pronoun, nominal, genitive everyone's everybody's anybody's something's anyone's no

someone's
PN$" pronoun, nominal, genitive,

ditto
one's

PP$ determiner, possessive his their my our its her your thy thine tha 'is yer me
PP$$ pronoun, possessive ours mine theirs yours his hers thine
PP1A pronoun, personal,

nominative, 1st person
singular

I

PP1AS pronoun, personal,
nominative, 1st person

plural

we wee

PP1O pronoun, personal,
accusative, 1st person

singular

me

PP1OS pronoun, personal,
accusative, 1st person plural

us 's

PP2 pronoun, personal,
nominative or accusative,

2nd person

you ye thee thou y' ya tha yuh

PP3 pronoun, personal,
nominative or accusative,

3rd person singular

it 't

PP3A pronoun, personal,
nominative, 3rd person

singular

he she 'e

PP3AS pronoun, personal,
nominative, 3rd person

plural

they

PP3O pronoun, personal,
accusative, 3rd person

singular

him her 'er 'im

PP3OS pronoun, personal,
accusative, 3rd person

plural

them 'em

PPL pronoun, singular, reflexive himself itself myself herself yourself oneself ourself thyself
PPLS pronoun, plural, reflexive themselves ourselves each one yourselves one-another
PPLS" pronoun, plural, reflexive,

ditto
other another another's other's

QL qualifier, pre too least most very as so more that less mighty real awfully
stark this sound precious

QLP qualifier, post enough indeed
RB adverb forward still together violently once immediately bluntly

clearly long obviously somewhere too truly seriously
accurately profoundly rapidly superbly about ever entirely

overseas ...
RB" adverb, ditto and large right particular least course once little last short

again than well general from full long so on common certain
alia the less main facto first yet se brief but ...

RB$ adverb, genitive else's

 65

RBR adverb, comparative later longer earlier more less better faster worse sooner
deeper higher harder closer nearer farther cheaper heavier

lower poorer oftener slower louder quicker ...
RBT adverb, superlative best most least fastest lowest worst nearest farthest closest

longest furthest
RI preposition, adverbial,

lacking compliment
before within between above since after with near against

alongside opposite but without below besides beyond
beneath underneath like

RN adverb, nominal now then here there downstairs upstairs indoors tho inland
here-and-now down-town zen hyar downtown

RP adverb, particle down up in through on off out apart about back over round
away outside across around aboard inside aside by past

behind under forth to oot
TO infinitival to to so in
TO" infinitival to, ditto as to order
UH interjection yes please well \0O.K oh no aw goodbye ah gee whiz sure

hey presto wham amen say why dear good-morning hurrah
aye welcome boy oi bang er hi hullo goddammit ...

VB verb, base: uninflected
present, imperitive or

infinitive

stop gather turn abolish put take appear prop favour drop
meet discuss want fall give consult delay sit attend pass pay

help try mention point say increase run know ...
VB" verb, base: uninflected

present, imperitive or
infinitive; ditto

pedal stitch shop

VBD verb, past tense opposed brought said telephoned went denied told remained
added renewed arose wanted meant talked flew covered

noted hoped thanked delivered supported felt noticed
agreed ...

VBG verb, present participle or
gerund

replying addressing changing switching recommending
hoping preserving provoking preventing wearing working

winding accepting recalling ordering listening using ...
VBN verb, past participle made put backed abolished created recommended

transmitted jailed decided presented cancelled prepared
discussed used posted regarded written indicated

favoured ...
VBZ verb, present tense, 3rd

person singular
believes remains gives smears shocks cables says needs
goes seems professes reports becomes publishes hopes

attacks cracks feels regards claims suggests comes speaks
outlines ...

WDT WH-determiner,
interrogative

what whatsoever whatever which whichsoever whichever
vich

WDT" WH-determiner,
interrogative, ditto

ever

WDTR WH-determiner, relative which
WP WH-pronoun, interrogative,

nominative or accusative
who whoever wot

WP$ WH-pronoun, interrogative,
genitive

whose

WP$R WH-pronoun, relative,
genitive

whose

WPA WH-pronoun, nominative whosoever
WPO WH-pronoun, interrogative,

accusative
whom-ever whom

WPOR WH-pronoun, relative,
accusative

whom

WPR WH-pronoun, relative,
nominative or accusative

who that

WRB WH-adverb when wherever where how why however whenever wherein
whereby whence whereof whereunto whereon

 66

XNOT negator not n't na
ZZ letter of the alphabet G-91 F B zh2014 A T-34 bf alp P A20 X D pi O F11309 a b

Q M R4 x z q y H M1 J1 M2 J2 n S U c e d f ...

Notes

1. Formulas contain many symbols that were represented by special character

sequences in the pre-formatting stage before the tagger was applied to the LOB

corpus. This explains the strange appearance of these examples of formulas taken

directly from the corpus.

2. The LOB corpus tagger assumed that the input had been pre-formatted. Mostly the

text was left as it would appear on a typed page but some characters where

represented differently. Amongst these were the quote character and the dash

character. The AMALGAM version of the LOB tagger will recognise and annotate

these characters in their usual forms: ` ' " -

3. Ditto tags were applied to words whose role changes from their normal syntax when

applied in cerain combinations. The first word of the combination is tagged as normal

and all subsequent words are given the first word's tag plus the ditto symbol ("). For

example, the combination "so as to" is tagged TO TO" TO".

4. Abbreviations in LOB were signalled by adding '\0' to the start of the abbreviated

token. The AMALGAM version of the LOB tagger will handle abbreviations whether

or not they have the '\0' prefix.

5. The tag classes NRS$ and OD$ were designed by the LOB corpus developers but

have no examples because there weren't any in the LOB corpus itself. NRS$ could

be used to tag a word like Sundays' and OD$ the word third's.

 67

Appendix D – Clustering output

Cluster 1
1
2
3
4
5
10
6
b
c
others
women
CARD 63.64%

Cluster 2
a
an
any
every
our
the
almost
ever
i
you
per
ART 36.36%

Cluster 3
able
going
ADJ 50%

Cluster 4
about
at
in
on
over
than
to
above
against
under
within
across
towards
PREP 100%

Cluster 5
act
age
school
war
class
section
countries
NOUN 100%

Cluster 6
added
asked
told
came
went
PAST 100%

Cluster 7
after
as
for
with
without
half
death
mind
again
here
now
then
once
everything
ADV 35.71%

Cluster 8
ago
however
perhaps
since
while
ADV 60%

Cluster 9
air
world
land
case
way
cases
NOUN 100%

Cluster 10
all
another
many
one
some
such
ten
ART 42.86%

Cluster 11
alone
away
down
off
together
along
around
round
PREP 87.50%

Cluster 12
already
also
not
still
usually
ADV 80%

Cluster 13
although
if
when
whether
whom
SCON 60%

Cluster 14
always
often
probably
sometimes
ADV 100%

Cluster 15
am
m
ve
PRES 66.67%

Cluster 16
american
local
modern
political
social
ADJ 100%

 68

Cluster 17
among
during
near
and
or
which
outside
PREP 57.14%

Cluster 18
anything
me
us
PRON 100%

Cluster 19
are
were
became
having
making
taking
he
she
they
we
who
PRES 36.36%

Cluster 20
area
field
period
state
meeting
point
stage
NOUN 100%

Cluster 21
art
life
power
business
children
men
people
things
course
NOUN 100%

Cluster 22
back
out
up
open
d
said
thought
got
just
like
s
ADV 36.36%

Cluster 23
be
been
being
less
more
no
too
re
certainly
therefore
thus
ADV 63.64%

Cluster 24
because
until
yes
SCON 66.67%

Cluster 25
become
get
make
take
PRES 100%

Cluster 26
before
but
that
though
yet
nor
CCON 50%

Cluster 27
began
want
wanted
PAST 66.67%

Cluster 28
behind
by
from
into
through
upon
heard
read
PREP 75%

Cluster 29
believe
feel
think
PRES 100%

Cluster 30
best
most
total
company
family
words
effect
problem
question
NOUN 77.78%

Cluster 31
better
right
even
only
rather
gone
four
two
six
free
love
ADJ 27.27%

Cluster 32
between
of
where
called
left
reached
PAST 50%

 69

Cluster 33
black
car
church
house
town
eyes
face
head
voice
NOUN 88.89%

Cluster 34
body
name
book
word
minister
NOUN 100%

Cluster 35
both
its
their
these
this
itself
themselves
DET 57.14%

Cluster 36
boy
girl
man
morning
NOUN 100%

Cluster 37
britain
london
order
NOUN 100%

Cluster 38
british
national
other
west
city
country
future
past
NOUN 75%

Cluster 39
brought
had
has
have
is
was
due
PAST 42.86%

Cluster 40
building
labour
service
society
trade
common
general
public
french
white
NOUN 90%

Cluster 41
can
could
might
would
it
there
MD 66.67%

Cluster 42
cent
NOUN 100%

Cluster 43
century
industry
market
NOUN 100%

Cluster 44
certain
further
good
little
very
human
real
ADJ 71.43%

Cluster 45
change
increase
NOUN 100%

Cluster 46
child
woman
figure
line
position
form
use
problems
results
NOUN 100%

Cluster 47
clear
true
close
hard
ADJ 100%

Cluster 48
come
go
help
turn
PRES 100%

Cluster 49
committee
council
government
party
development
education
food
water
law
music
NOUN 100%

Cluster 50
concerned
particularly
shown
PAST 66.67%

Cluster 51
control
experience
policy
later
times
today
cut
set
play
NOUN 88.89%

 70

Cluster 52
day
night
days
years
light
paper
table
time
year
NOUN 100%

Cluster 53
de
john
whose
NOUN 33.33%

Cluster 54
did
does
may
must
will
MD 40%

Cluster 55
different
high
large
long
new
old
young
full
short
ADJ 88.89%

Cluster 56
difficult
necessary
possible
ADJ 100%

Cluster 57
do
know
say
tell
PRES 100%

Cluster 58
doing
found
taken
done
seen
PAST 80%

Cluster 59
door
room
hand
office
side
NOUN 100%

Cluster 60
doubt
fact
NOUN 100%

Cluster 61
dr
miss
mr
sir
mrs
NOUN 100%

Cluster 62
each
those
several
DET 66.67%

Cluster 63
early
east
south
following
united
ADJ 60%

Cluster 64
either
except
forward
given
made
used
ADJ 66.67%

Cluster 65
end
top
NOUN 100%

Cluster 66
england
god
NOUN 100%

Cluster 67
english
lord
president
hall
road
street
NOUN 83.33%

Cluster 68
enough
nothing
something
indeed
PRON 50%

Cluster 69
example
NOUN 100%

Cluster 70
far
much
so
well
soon
mean
ADV 83.33%

Cluster 71
father
mother
wife
NOUN 100%

Cluster 72
feet
hands
own
NOUN 66.67%

Cluster 73
felt
saw
PAST 100%

Cluster 74
few
great
small
special
moment
ADJ 60%

 71

Cluster 75
find
see
show
look
talk
PRES 100%

Cluster 76
first
last
present
next
second
five
three
ADV 42.86%

Cluster 77
gave
took
PAST 100%

Cluster 78
give
keep
leave
let
pay
PRES 100%

Cluster 79
group
system
value
NOUN 100%

Cluster 80
heart
job
story
NOUN 100%

Cluster 81
held
put
kept
turned
PAST 100%

Cluster 82
her
his
my
your
herself
him
them
himself
PRON 100%

Cluster 83
home
place
work
week
least
NOUN 80%

Cluster 84
hope
knowledge
view
NOUN 100%

Cluster 85
hours
months
interest
money
living
working
NOUN 100%

Cluster 86
how
what
why
sure
WH 75%

Cluster 87
idea
sense
NOUN 100%

Cluster 88
important
known
need
reason
ADJ 50%

Cluster 89
kind
type
NOUN 100%

Cluster 90
knew
says
PAST 50%

Cluster 91
level
rate
matter
result
NOUN 100%

Cluster 92
ll
shall
should
MD 100%

Cluster 93
looked
stood
looking
PAST 66.67%

Cluster 94
main
whole
same
ADJ 66.67%

Cluster 95
means
members
part
terms
NOUN 100%

Cluster 96
n't
never
quite
really
ADV 75%

Cluster 97
number
NOUN 100%

Cluster 98
particular
various
ADJ 100%

Cluster 99
seem
seemed
seems
PRES 66.67%

Cluster 100
thing
NOUN 100%

