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Summary 

 

This project describes a method which can automatically infer word classification.  Previous 

systems designed to assign parts-of-speech to words sought the use of training data or were 

built upon rules devised by experts in linguistics.  The report details the use of an 

unsupervised approach that can reduce significantly the reliance on prior linguistic intuition. 

 

The study looks in to how words behave relative to the function words.  As these are the 

most common words, there is a great deal of information that can be attained.  It was 

possible to analyse how the content words from a given body of text were distributed with 

respect to the function words.  This information could be used as a profile, and therefore 

content words with a similar profile against the function words could be assumed to be of 

similar word class. 

 

Agglomerative hierarchical clustering techniques were applied to partition words into 

different clusters.  Words that were deemed similar were grouped together, and thus, each 

cluster should contain words that posses the same part-of-speech. 

 

This project performed many experiments to investigate how the many factors affected the 

overall clustering performance, in order to find the optimal parameters.  The results report an 

accuracy of 87% when performed on the LOB corpus.  Experiments were also carried out 

with an alternative Spanish corpus and the clustering accuracy achieved 85%.  Semantic 

clustering was also observed indicating the effectiveness of the described approach for the 

task of automatically acquiring word classification. 
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1 Introduction 

1.1 What’s the problem? 

 

This project primarily deals with attempting to differentiate words according to their word 

classification, e.g., is it a noun?  Or a verb?  Etc.  This process is referred to as tagging, and 

is a task found within the field of Natural Language Processing (NLP). 

 

Tagging is described in more detail in section 2.  It is important to appreciate, however, that 

tagging has an important role within NLP and helps to provide a solid foundation for many 

larger applications which require the information that tagging can provide.  It is for that 

reason that taggers have been around as early as the 1960's. 

 

Early taggers relied on expert linguists to define rules which would then be able to assign a 

word with its respective classification.  The next breed of taggers used statistical techniques 

to calculate probabilities in order to determine the word classification.  This still requires 

experts in order to gain maximum potential out of such a tagger, as it needs to be trained in 

order to be effective. 

 

The aim of this project has been to attempt a more novel approach than those used in 

taggers over the past 40 years.  In more recent years, the idea of utilising unsupervised 

techniques in tagging has showed promising results.  This essentially involves looking at 

how words behave relative to each other.  By analysing which words appear in close 

proximity (and for that matter, also those that do not) it is possible to gain a great deal of 

information that can be used to partition words into their correct classification, with the need 

of prior expert knowledge. 

 

More specifically, looking at how words behave relative to function words is what this 

research concentrates on.  Function words are a small set of words which occur most 

frequently in the English language and play an important part in grammar. It is therefore 

reasonable to expect that they possess lots of information that can be extracted to acquire 

word classification.  Investigating that hypothesis is the purpose of this project. 
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1.2 Aims and objectives 

1.2.1 Overall Aim Of The Project 

 

The aim of the project is to apply Natural Language Learning (NLL) techniques to develop 

methods to determine the classification of words automatically. 

 

1.2.2 Objectives Of The Project 

 

1. To investigate the current techniques used to tag words into parts-of-speech. 

2. Look at NLL techniques to determine whether any may be useful for solving the 

problem. 

3. Obtain a variety of samples of written text on which to apply NLL techniques on.  

4. Develop an algorithm to automatically classify words from an inputted sample of text. 

5. Evaluate and verify accuracy of algorithm by comparing results to tagged corpora 

created by expert linguists. 

1.2.3 Minimum Requirements Of The Project 

 

1. To produce an algorithm that can analyse the relationship between content words 

and a given set of function words. 

2. By looking at such relationships, extend the algorithm to cluster words which behave 

similarly to each other, relative to the function words. 

3. Verify that the majority of content words in each cluster are of an equivalent class of 

words, e.g., nouns. 

4. To test the algorithm on English plus one other language. 

 

1.3 Scope 

 

Whilst the majority of this report focuses on what the project has done, it is worth noting now 

what this project has not done.  This is because with work of this nature, there is no limit to 

the depth of research which could potentially be carried out.  The purpose of this sub-section 

is therefore to outline the main boundaries to define the scope of this project. 
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The objective of this project is not to produce a highly accurate tagger per se; it is to develop 

a method which requires as little linguistic intuition as possible to acquire word classification, 

and investigate the effectiveness of that method by experimenting and evaluating its 

accuracy.  If it transpired that the method implemented was only 10% accurate, then the 

aims and objectives of the project would still have been met – with the conclusion that the 

proposed method is unsuitable for this task. 

 

Another worthwhile point is that this project is not a software engineering exercise.  Although 

a considerable amount of programming is involved to implement the solution – the software 

is the tool for evaluating the feasibility of the proposed method to automatically acquire word 

classification.  Therefore, despite belief of the author that the implementation is efficient, and 

more importantly, correct, there are no guarantees that it is so.  Design and testing for the 

coding of the software will not feature in this report. 

 

1.4 Structure of report 

 

Section 2 introduces all the relevant background information that aims to provide a broad 

understanding of all topics and principles that are covered throughout the rest of the report.  

Section 3 will discuss the approach that was used to develop a method of automatically 

classifying words.  Section 4 goes on to describe the implementation of the algorithms 

outlined in section 3 and how they are used to obtain the results. Section 5 summarises the 

experiments performed using the software to discover what influence the many factors have 

on the overall clustering accuracy.  Section 6 examines potential work for the future.  Finally, 

section 7 provides the conclusions of the project, reporting on what has been achieved and 

experimental findings. 
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2 Background 

2.1 Word Classes 

 

The English language can be broken down into parts-of-speech.  At the highest level, there 

are closed class types and open class types.  Closed classes are so called because they 

remain relatively permanent.  The closed classes all tend to be function words, therefore, 

examples would be pronouns, prepositions, conjunctions etc.  Such classes remain 

comparatively static, in that new function words rarely occur.  In contrast, the open classes 

do not remain fixed; examples of open classes are nouns and verbs, of which new words of 

these types are added continuously (Jurafsky and Martin 2000).  The rate at which new 

words are “discovered” is considerable.  The Oxford English Dictionary (Simpson and 

Weiner 1989) – seen by many as the authority for its coverage of the English language, past 

and present – has a team of skilled linguists whose job is to “discover” new words and 

gather evidence of its usage.  Subscribers to the OED online service can expect the benefit 

of “at least 1,000 new and revised words will be released each quarter”.  Such a statement 

illustrates not only the rate of which new words are adopted in everyday language, but also 

to how defined words are adapted to provide new meanings.   

 

N.B. Word class and part-of-speech will be used interchangeably in this report. 

2.2 Corpora 

 

A corpus is essentially a collection of text.  In order to expand, corpus samples are often 

taken from newspaper articles, novels etc.  Popular English corpus resources include: 

 

• Brown Corpus (Kucera and Francis 1967, Francis 1979 and Francis and Kucera 

1982) 

• LOB Corpus (Johansson et al. 1986) 

• COBUILD Corpus (Sinclair 1987) 

• British National Corpus (Leech 1993) 

 

Each corpus contains various quantities of words, from different samples.  For example, the 

Brown corpus was designed as a representative sample of written American English.  The 

LOB corpus was created as a British English equivalent.   
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Corpora are not restricted to collections of written text.  There exist many spoken word 

corpora.  Such a corpus is a collection of spoken utterances.  It is worth noting that the 

words, and their usages can vary tremendously – it should not come as any surprise to 

reveal that the language used when a person speaks will often be different to the language 

they use when writing.  Examples of spoken corpora: 

 

• London Lund Corpus (Svartvik 1990) 

• Lancaster/IBM Spoken English Corpus (SEC) (Taylor and Knowles 1988) 

• Corpus of London Teenage Language (COLT) (Haslerud and Stenström 1995) 

 

2.3 Tagging 

 

The discipline of Natural Language Processing has long sought to investigate the 

information that can be gained by analysing how words of different parts-of-speech behave 

relative to each other (Manning and Schütze 2000).  In order to do that, there must exist a 

large corpus of words, each respectively assigned a tag to indicate which word class they 

belong to. 

 

To achieve a tagged corpus, a tagset must first be defined.  Tagsets can vary enormously in 

size from 40 to 200 tags (Jurafsky and Martin 2000).  Of course, a significant number of 

those tags are associated with punctuation.  See appendix C for the tagset used by the LOB 

corpus.  Popular tagsets include:  

 

• 45-tag Penn Treebank tagset (Marcus et al. 1993) 

• 61 tag C5 tagset used for the British National Corpus (Garside et al. 1997) 

• 87-tag tagset used for the Brown corpus (Francis 1979; Francis and Kucera 1989) 

• 146-tag C7 tagset (Leech et al. 1994) 

 

It would be unfeasible to expect an expert linguist to manually tag the words of an entire 

corpus at is could contain hundreds of thousands, if not millions of words!  Instead, 

automatic algorithms to perform this task have been created; these fall into two main 

categories: rule-based tagging and stochastic.  Rule-based tagging – as the name suggests 

– relies upon hand-written rules which define constraints to ensure correctness.  A typical 

approach uses a two-phase approach.  See early examples of this approach in Harris (1962); 

Klein and Simmons (1963); Greene and Rubin (1971).  The first stage uses a dictionary 

lookup containing words and their potential parts-of-speech.  The second stage is to then 
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apply the rules to remove any ambiguity, thus reducing the list to a single tag for each word.  

Stochastic tagging involves the use of probabilities to determine the most likely tag for a 

word, such as HMM1-based or cue-based.  Using probabilities in tagging is an obvious 

approach and has been utilised for many decades.  First used by Stolz et al. (1965), various 

stochastic taggers include Marshall (1983), Garside (1987), and Church (1988).  HMM 

taggers have to be trained on previously tagged data in order to calculate the probabilities 

for tag sequences.  Also, it has been demonstrated that with the use of the Expectation-

Maximisation (EM) algorithm (Dempster et al. 1977), that stochastic models can be trained 

on untagged data (Cutting et al. 1992).  However, this method still requires a dictionary of 

words with their respective word tags.  The EM algorithm is then able to calculate the 

likelihood for each tag and tag-transition probabilities.  Experiments so far, however, have 

shown that taggers trained on tagged data will perform better than ones employing the EM 

algorithm (Merialdo 1994). 

 

2.4 Ambiguity 

 

The majority of words can easily be classified because they only belong to a single word 

class.  However, many of the common words used can have more than one part-of-speech.  

For example, ‘dish’ can have more than one usage: as a noun in dish of soup, or as a verb, 

as in dish the soup.  Such cases are known as ambiguous.  With respect to tagging, it is up 

to the algorithm employed to disambiguate words by ensuring they take the context of its 

usage into consideration. 

 

2.5 Function Words 

 

For this project, particular attention will be focused on the function words that appear within a 

given text.  As mentioned previously, function words tend to fall into the closed classes.  The 

closed classes are (with examples which are by no means exhaustive): 

 

• Prepositions: on, at, to, of 

• Determiners: a, an, the 

• Pronouns: she, who, I 

• Conjunctions: and, but, if, or 

                                                 
1 Hidden Markov Model 
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• Auxiliary verbs: can are, may 

• Particles: up, in, by 

 

Function words have an important part in grammar.  They appear the most frequently, which 

also explains why they are short in length.  In the development of language, common words 

are also short words because they require less effort to use. (Zipf, 1949) 

 

2.6 Automatically Acquiring Word Classification 

 

This project will focus primarily on the automatic acquisition of word classification.  The 

difference between this method and other part-of-speech tagging essentially comes down 

the amount of expert linguistic knowledge the algorithm has incorporated.  Tagging 

algorithms rely on prior knowledge of the language such as grammatical rules and 

precompiled lists of words with their possible tags.  Automatically determining parts-of-

speech on the other-hand presumes no prior intuition and should be ignorant of the given 

language, lexical types and grammatical rules – or, it is often referred to as unsupervised. 

 

A popular and straightforward approach to solve the problem is by means of distributional 

analysis.  A statistical method of looking at where word types are positioned most frequently 

within a sentence. 

 

Its usefulness has been called into question.  Chomsky has never been enthusiastic about 

distributional linguistics (Chomsky 1964), or the automatic discovery of grammars, 

concluding: “I think it is very questionable that this goal is attainable in any interesting way” 

(Chomsky 1957).  It is his belief that linguistic knowledge is already formed in the brain and 

not acquired during learning because language is sparse and variable.  However, the debate 

to the innateness of language in humans need not concern this project. 

 

Data sparseness is a problem throughout the domain of NLP.  This can be explained using 

Zipf’s Law.  He observed (Zipf 1949) that if you list words in order of their frequency of 

occurrence, then the relationship between the frequency of a word f and its position in the list, 

known as its rank r, can be described as: 

 

r
f

1
∝
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The implication of this law is that the vast majority of words that appear in a given corpus will 

be sparse, and for relatively few common words will there be many examples (Manning and 

Schütze 2000).  For words that do not occur frequently, it is difficult to reliably deduce 

information about them.  One way to combat the problem is to simply use a larger corpus of 

words, thus increasing the probability of rarer words to appear.  Unfortunately, this is often 

infeasible as the computational demands of processing large numbers of words becomes 

astronomical (this is less restricting due to the ever increasing performance of computers).  

Additionally, the greater the size of corpus, new words with sparse distributions appear.  

Another possible approach is the hand-pick special examples to ensure certain words, word 

combinations etc., are analysed.  However, the overall result will not be representational of 

common word usage as found in corpora. 

 

2.7 Relevant Research 

 

Kiss (1972), in the context of understanding the psychology of learning, studied the order of 

acquisition of words in children.  He showed that it was statistically possible to distinguish 

different word classes based on their distributional properties.  His approach took 30 words 

from language found in children’s literature and clustered them based on their similarity to 

their nearest neighbour bigram2 counts.  He was restricted to only being able to classify few 

words. 

 

Baker (1975, 1979) published a model which originally intended as a procedure for 

automatic training of speech recognition systems.  However, it happened that it could be 

also used for the purpose of tagging parts-of-speech.  Assuming that a language could be 

generated by a Markov process, then he proposed a technique to automatically calculate the 

parameters of a Markov model which was compatible with the data.  Unfortunately, Baker’s 

recursive formulae for estimating the parameters of a Markov model was computationally 

expensive which prevented any practical application (Atwell 1987). 

 

Atwell (1987) attempted to apply the theory put forward by Baker (1975, 1979).  He had to 

place considerable constraints in order to make the computational demands more 

reasonable; for example, the assumption that a word can only belong to a single word class.  

Also, he only considered words located immediately before and after each designated word 

                                                 
2 An n-gram is a sequence of n successive objects.  In this instance, the objects are words, and bi 

represents n = 2. 
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(although this was performed separately because processing was still very slow).  Despite 

some promising outcomes, Atwell acknowledged that his sample was too small to provide 

conclusive results (at the time, using a sample of 200,000 words, the program took several 

weeks on a mainframe computer to complete the task), and that the constraint on single 

word class participation would need to be removed for the system to be wholly successful.   

 

Hughes (1994) performed many experiments in order to find which factors give the best 

accuracy when automatically determining parts-of-speech.  The variables were: 

 

1. The contextual pattern, e.g., sentence position distribution; various sized bigrams. 

2. The metric used to calculate the distance between words in vector space. 

3. The clustering method, e.g., Single linkage; Centre of gravity; Ward’s method etc. 

4. The size of the comparison set. 

 

With a 35 million word corpus available, generated from extracting USENET articles, the 200 

most frequent words were used in the experiments, which were adequate to evaluate the 

most effective factors.  Once the best combination had been established, he clustered the 

top 2000 occurring words from his corpus with a high degree of success: 87% accuracy if 

the words are classified into 100 clusters.   

 

Hughes found that the distributional redundancy of word types was revealed using bigrams 

rather than absolute sentence position.  And that the context of absolute sentence position 

distribution was contained within the context of bigram counts. 

 

Redington et al. (1998) undertook research into automatically acquiring syntactic categories 

in the psychological context of attempting to understand the processes of how children learn 

language showed good success.  A particularly relevant experiment performed was 

clustering a set of words with the function words removed.  The reasoning for the test was 

that child speech is sparse in function words in comparison the proportion of content words 

they use.  If they are effectively only concentrating on content words, then a child’s 

mechanism for acquiring word classes does not require function words.  That specific 

experiment did show that word classification was in fact possible when function words were 

excluded from the input stream.  However, they did acknowledge that removal of the function 

words did have a “considerable impact” on the informativeness of the results. 
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2.8 Clustering 

 

The principle of clustering algorithms is to divide a set of objects in to clusters.  By using a 

given measure of similarity, a good clustering algorithm will place objects that are similar into 

the same cluster, whereas dissimilar ones are clustered into different groups. 

 

Clustering is ideal for the automatic acquisition of parts-of-speech because is unsupervised 

– in that it doesn’t require training of class labels to partition groups. 

 

Clustering algorithms fall broadly into a few fundamental types.  The first relates to the 

structure of clustering that is employed.  Flat clustering is simple in structure: consisting of a 

particular number of clusters, where the relations between them are often undetermined.  

The alternative is hierarchical clustering.  This can be represented as a tree structure, where 

the root is the entire set of objects, and each node corresponds to a subclass of its parent 

node.  The leaves of the tree are the individual objects that have been clustered.  Another 

type of clustering is defined by membership of objects in clusters.  Hard clustering has the 

constraint that an object can only belong to a single cluster.  If membership in multiple 

clusters is permitted, then the clustering algorithm has performed soft clustering (Manning 

and Schütze 2000).  Hard clustering in the context of this project has obvious implications 

with regard to ambiguity of word types, and will need to be addressed during the selection of 

the appropriate algorithm to solve the task. 

 

The hierarchical  method is the most applicable to the problem at hand.  The clustering 

methods used in this project are discussed in section 3.3 

 

There is clearly a trade-off in choosing the right algorithm between the performance of the 

clustering (with respect to the accuracy of the results) and its computation demands.  

Clustering is a very expensive process, therefore efficiency is very important to allow a large 

enough number of words to be clustered for the results to be conclusive.  Previous research, 

as mentioned above, have all suffered because of the restrictions caused by implausible 

computing time of large samples.  It is difficult to tell which particular method will give the 

best results.  It will therefore be necessary to experiment with various algorithms to establish 

the one which gives optimal performance. 
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2.9 Summary 

 

Applying Natural Language Learning techniques to automatically determine parts-of-speech 

is still in its infancy.  This is due to progress being hindered by the huge computational 

demands the problem exhibits.  However, the results from the research discussed earlier are 

promising enough to boost confidence that attempting to automatically acquire word classes 

is not only feasible, but can be highly accurate. 

 

By only concentrating on the role of the function words, and how content words are 

distributed in relation to them - as opposed to looking at how each word interacts with every 

other word - this should reduce the intensity of processing required to cluster the content 

words into their respective word classes.  Of course, there is the risk that the results may not 

be as accurate due to that very fact that only the relationship between function words and 

content words is being analysed.  The experiment carried out by Redington et al. (1998) 

showed that by not including the function words in the analysis, results were drastically 

affected, which bodes well in the assumption that due to the importance of function words in 

grammar, they are rich in syntactic information.  It is ultimately the purpose of this project to 

evaluate the effectiveness of this approach. 

 

The overall goal of this line of research is worthwhile.  Not only does it offer attractive 

prospects for the use in deciphering unknown languages.  As Atwell and Drakos (1987) 

concluded, the ‘bottleneck’ in commercial exploitation of NLP systems would be resolved 

because tailoring specialised applications could be automated in order to provide solutions 

for a wide range of applications. 
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3 Method for solution 

3.1 Obtaining function words 

 

Function words play an important role in this project, since all content words will be 

compared by how they behave relative to them.  For the sake of simplicity, automatically 

acquiring these words was skipped and a list of the most common function words were 

selected for use throughout the rest of the project. 

 

Rank Function 

word 

Rank Function 

word 

Rank Function 

word 

Rank Function 

word 

Rank Function 

word 

1 the 11 for 21 not 36 one 61 into 

2 of 12 he 23 this 37 there 65 then 

3 and 13 as 24 but 39 we 74 any 

4 to 14 be 25 from 43 so 89 before 

5 a 15 on 27 are 44 when 112 between 

6 in 16 with 28 which 45 if 118 because 

7 that 17 I 30 her 51 who 124 without 

8 is 18 his 33 they 57 what 129 each 

9 was 19 at 34 an 58 my 132 another 

10 it 20 by 35 were 59 could 145 while 

Table 3.1 – The selected 50 function words and their rank in the LOB corpus. 

 

The table above contains the 50 function words chosen for this project.  They are listed in 

order of rank from the LOB corpus.  The top 20 words from the LOB corpus are captured in 

the list of function words.  The majority of the top 30 are present, and admittedly, after that, 

they soon trail off to lower ranks.  However, of the 50 picked, they all fall within the top 145 

most frequent words in the LOB corpus, which still illustrates just how common the function 

words are, considering the corpus contains 50,000 distinct words. 

 

Although obtaining function words without the aid of any expert linguistic knowledge would 

have certainly been preferable, the reason for this decision was due to the fact that size of 

the project was large enough – it was important to concentrate on the core objectives.  If the 

results from using a given list of function words proved promising, then it would obviously be 

worthwhile as a future extension to implement an algorithm to perform this task. 
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3.2 Gathering distribution data 

 

The method in which the distribution data is collected is the crux of this project and is what 

differentiates it from the many other pieces of research that have employed a clustering 

approach.   

 

Firstly, a target function word and a target content word are selected.  A window is specified, 

i.e., the distance (measured in number of words) either side of the target function word that 

you wish consider.  For every occurrence of the target function word with in the corpus, the 

target content word is checked to see if it fell within the window.  If it did, a note of the 

distance between the target words was made. 

 

function = 'in' / content = 'the'

0

200

400

600

800

1000

1200

1400

1600

-4 -3 -2 -1 0 1 2 3 4

Position relative to funtion word

Fr
eq

ue
nc

y

in / the

 

Fig. 3.1 – Graph showing how ‘the’ is positioned relative to ‘in’ from the Don Quixote corpus.  

 

By treating each possible position of the target content word as a separate dimension, it is 

possible to represent the above graph as a vector by putting the frequency of occurrence for 

each dimension.  To obtain the matrix for the above distribution: 
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Relative Position Frequency 

-4 317 

-3 288 

-2 341 

-1 0 

0 0 

1 1457 

2 146 

3 350 

4 510 

Fig. 3.2 – Demonstrating how the dist ribution data is translated in to a vector. 

 

N.B. Storing the relative position of 0 in the matrix is not required since the content can 

never be at position 0. 

 

To produce a distribution profile for a given target content word against the function words, a 

vector can be created for each function word with the same content word, then all 

concatenated into a single vector (Fig 3.3).  The number of dimensions that the final vector 

possesses will be number of function words multiplied by the window size. 
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Fig. 3.3 – Joining the vectors to create a single vector that profiles the content word against all 

function words.  

 

3.2.1 Normalising 

 

In order to compare vectors fairly, they must first undergo normalisation.  To illustrate why it 

is necessary, consider the following example: the distributions of the content words ‘first’ and 

‘second’ relative to the function word ‘the’.  They are both classed as the same part-of-

speech – in this case, ordinals.  Therefore, it would be reasonable to expect that they would 

behave similarly with the word ‘the’. 
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Fig. 3.4 – Two graphs plotted showing the effect of normalisation. 

 

The distributions on the left of Fig. 3.4 show the absolute frequency distributions.  It is clear 

to see that both content words share a similar ‘shape’.  However, because the content word 

‘first’ occurs more frequently in the corpus, the two words would be significantly dissimilar 

and therefore may not end up being classed together.  

 

In the graph on the right of Fig 3.4.  The data has been normalised and now the two 

distributions virtually overlap.  By taking account of their relative frequency, there is a greatly 

increased chance that similar words will be shown to be so, regardless of their absolute 

frequency. 

 

The formula for calculating a normalised vector is: 
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Where the jth element of the vector Vi divided by the sum of all elements in Vi gives the jth 

element of the normalised vector Vi’ 
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3.3 Clustering 

 

Using clustering techniques allows us to gather words into groups based on their distribution 

relative to the function words. 

 

3.3.1 Measuring similarity 

 

The advantage of using vectors to represent a content word’s distribution is that they can be 

plotted as individual points in a high-dimensional vector space.  And so, words that behave 

in a similar fashion will occupy a similar place in that vector space.  It is therefore merely a 

matter of calculating the distance between two vectors which will give a measure of 

similarity3.   

 

The use of distance normally refers to the Euclidian distance between two vectors.  However, 

there are many distance functions that can be used.  For most problems, the generalised 

Minkowski distance is more than adequate: 
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Where k is the number of elements in vectors Vx and Vy.  Vxj is the jth component of the Vx 

vector.   Changing the value of m gives different distance functions.  Two such functions 

were used in this project. 

 

3.3.1.1 Manhattan distance 

 

Substituting 1 for m gives: 
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3 For the sake of clarity, it is worth noting that distance is inversely proportional to similarity, i.e., the 

greater the similarity between two vectors, the smaller the distance between them. 
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This measure simply returns the magnitude of the difference between the two vectors. 

 

3.3.1.2 Euclidian distance 

 

Substituting 2 for m gives: 
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3.3.2 Distance matrix 

 

A distance matrix is used to store the distances between each pair of vectors.  This matrix 

can be manipulated iteratively, which makes it an effective tool for the use in clustering. 

 

The toy example shown in Fig. 3.5 demonstrates the role of a distance matrix.  It is evident 

that the matrix need only be a lower triangle matrix.  The reason for this is twofold.  Firstly, 

the distance functions are commutative, i.e., D(Vi, Vj) = D(Vj, Vi).  Secondly, the distance 

between the same vector, D(Vi, Vi), always equals zero.  Only having to store half the matrix 

has clear computational benefits. 

 

3.3.3 Clustering algorithms 

 

This project makes use of agglomerative hierarchical clustering techniques.  Generally, the 

procedure for clustering this method is as follows: 

 

Fig. 3.5 – A toy example of a distance matrix. 
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1. Calculate relevant statistics on the set of objects to be clustered in the form of 

vectors. 

2. Where N is the number of objects, create a NxN matrix by measuring the distance 

between each pair of vectors. 

3. Search for the pair which are closest (i.e., has the lowest value) as this is the similar 

word pair. 

4. Calculate a new distance matrix, replacing the most similar pair with a measurement 

which represents the union of them.  Thus, the new matrix will be one row and one 

column smaller in size. 

5. Continue to search for the lowest value and then recalculate until the matrix has 

merged into a single cell. 

 

The way in which the distances between clusters are defined, during step 3, is what 

distinguishes one clustering algorithm from another (Everitt 1993).   

 

Clustering would be computationally expensive if it were not possible to calculate new 

groupings iteratively.  Fortunately, it is possible to determine new clusters from the distances 

in the previous distance matrix.  Lance and Williams (1967) demonstrated that many 

clustering algorithms can be derived from a single generalised equation: 

 

QYQXYXQYYQXXQP DDDDDD ,,,,,, −+++= γβαα  

 

where the parameters α, β, and γ  correspond to a clustering method.  DP,Q is the distance 

between clusters P and Q.  The cluster Q is the new cluster formed by the merging of 

clusters X and Y. 

 

Of the many methods that exist, four were implemented.  These are described below. 

 

3.3.3.1 Complete Linkage 

 

Also know as the ‘furthest neighbour’ method since it measures the distance between two 

groups as the most distant pair of individual objects, one from each group. 
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The parameters for complete linkage are: αX = 0.5, αY = 0.5, β = 0 and γ = 0.5.  Which gives: 
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Fig. 3.6 – Diagram illustrating Complete linkage, or ‘furthest neighbour’.  The new cluster Q is 

formed from combining the two groups X and Y. 

 

3.3.3.2 Group-Average 

 

The group-average method measures distance by taking the average of the distances 

between all pairs of individual objects from the two groups. 

 

The parameters for group-average are: αX = 
P

X

N
N

, αY = 
P

Y

N
N

, β = 0 and γ = 0.  Which gives: 
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NX and NY are the number of objects in the clusters X and Y respectively.  Also,  

NP = NX + NY 
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3.3.3.3 Weighted Group-Average 

 

A slightly modified version of the group-average method.  This method ignores the size of 

the clusters to be grouped in favour of the assumption that they are of equal size.  The 

reason for this approach is to give smaller clusters a greater influence when grouped with a 

much larger cluster. 

 

The parameters for weighted group-average are: αX = 0.5, αY = 0.5, β = 0 and γ = 0.  Which 

gives: 
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3.3.3.4 Ward’s Method 

 

Ward’s method (Ward 1963) differs somewhat from the algorithms described above.  The 

distance calculated has no real relevance in terms of geometric distance, rather it is a 

statistical measurement of the minimal information loss.  The method works as follows: the 

central point for pairs of clusters is evaluated.  The total sum of squared distances from this 

central point to all objects in this hypothetical cluster is then calculated.  The cluster with the 

smallest sum of squares is the new cluster. 

 

Zupan (1982) regarded Ward’s method as “a very efficient clustering method, but favours the 

grouping of small clusters.”  What he may have thought a potential disadvantage could be 

beneficial for the clustering of words. 

 

The parameters for Ward’s method are: αX = 
PQ

XQ

N
N

, αY = 
PQ

YQ

N
N

, β = 
PQ

Q

N
N

−  and γ = 0.  

Which gives: 
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Na is the total number of objects in cluster a. 

Nab is the combined total of objects in clusters a and b. 
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3.3.3.5 Other algorithms 

 

Four other algorithms were in fact implemented for this project.  They were: Single Linkage, 

Median, Centoid and Centre of Gravity.  Unfortunately, they performed so poorly for this 

particular application that they were not considered in the evaluation.   

 

3.4 Obtaining a corpus 

 

Choosing a corpus should never be a trivial task as they can influence greatly the 

performance of a system.  For example, if a speech recognition system were being 

developed, then it would benefit from a corpus of spoken language to train the system, 

rather than any other types.  It does not mean that a corpus of written language is not valid, 

however, it merely does not reflect the most appropriate usage. 

 

Another important feature of a corpus is its size.  The major reason for this is that it combats 

the data sparseness problem.  A common approach for researchers in the past few years 

has been to compile massive corpora by extracting text from USENET newsgroups.  

Examples include: 

 

• Hughes (1994) collected 35 million words, of which 30 million were taken from 

USENET.   

• Finch and Chater (1992) built a 40 million word USENET corpus. 

• Lund and Burgess (1996) experimented with a 160 million word USENET corpus. 

• Levy and Bullinaria (2001) managed to accumulate a vast 168 million word corpus 

from USENET. 

 

Despite the availability of such vast bodies of written text, it may be unwise to rely on them, 

and their ever increasing size.  If a machine learning system was developed in order to 

penetrate the syntax of an unknown language, it may fail if its success depends on analysing 

massive samples of that language.  In fact, to collect 168 million words in any language 

other than English would be not be a trivial task.  Corpora of other known  languages are not 

nearly as plentiful, or as large.  USENET cannot be relied upon due to the dominant 

language being American-English. 

 

For experimentation with the English language, two corpora were used, both chosen to be 

deliberately small (compared to modern day corpora).  The first corpus was taken from a 
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single source; an English translation of Don Quixote de la Mancha by Miguel de Cervantes 

(Ormsby 1885).  An electronic version was obtained freely from Project Gutenberg4.  This 

body of text contains 426,700 words, consisting of 16,000 unique tokens.  The size of this 

corpus, though relatively small, is still adequate to perform the distributional analysis on, and 

cluster effectively.  The added benefit is that execution time for the whole clustering process 

is greatly reduced due to not handling a massive number of words. 

 

The second corpus used was the LOB corpus.  It totals one million words, of which there are 

approximately 50,000 unique tokens.  At over twice the size of the Don Quixote corpus, it 

should provide an interesting glimpse at how the size of corpus can affect the end 

performance of the clustering process. 

 

The clustering process will not attempt to cluster all of the words in the entire corpus.  For 

the experiments performed in this work, a limit of the most frequent 500 content words was 

set.  Such a limit may sound small relative to the number of distinct words in the corpora, 

however, if you recall Zipf’s Law from section 2.6, the vast majority of the words in a body of 

text can be accounted for from a small percentage of the highest ranked words. 
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Fig. 3.7 – Cumulative frequency graphs plotted for both corpora. 

                                                 
4 An online resource of royalty-free e-texts.  http://promo.net/pg/ 
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It can be seen from Fig. 3.7 that the 500 most frequent words for both corpora captures a 

high percentage of the total number of words.  Indeed, a coverage of 77.1% is attained for 

the Don Quixote corpus, and a slightly lower 64.4% for the LOB corpus.  Therefore, for the 

purposes of any experiments undertaken, only clustering 500 words is acceptable. 

 

For experimentation with an alternative language, Spanish was selected.  Acquiring a 

relatively small Spanish corpus proved to be straightforward, as an electronic copy of the 

original Spanish version of Don Quixote was again obtained courtesy of Project Gutenberg.  

An interesting observation with the Spanish Don Quixote is that it is only 383,200 words in 

size, with a vocabulary of 24,000 words.  This is roughly a difference of 43,000 words 

compared to the English translation.  Yet, the vocabulary is 8,000 richer than the English 

equivalent.  The variation in the word count can largely be attributed to the translator’s 

preface which totals to over 17,000 words.  The rest of the difference illustrates that there is 

never a direct one-to-one relationship between words from different languages.  In this 

example, there are clearly words and phrases in Spanish that cannot be expressed in the 

same number of words for their English equivalent. 
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4 Design and Implementation 

 

This section provides an overview of the software implemented and discusses the design of 

the algorithms developed for this project.  The set problem was substantial, therefore 

implementation of the solution was broken up into smaller, more manageable sub-tasks.  

This is not unusual programming practice.  The end result is a suite of tools - some of which 

are useful on their own – that when used together, perform the clustering as required by the 

project. 

 

Fig. 4.1 shows the entire process from the original corpus to the end result.  The corpus is 

processed by a number of different tools, and the clustering stage comes at the very end of 

a relatively long route. 

 

4.1 Segmentation 

 

The main role of this tool is to isolate each word from the raw text of the inputted corpus.  To 

do this, firstly, (almost) all punctuation is removed, since there is no information to be gained 

from keeping it.  Secondly, all upper case characters are converted to lower case to rule out 

potential problems with case sensitivity.   

 

4.1.1 Punctuation policy 

 

A more detailed description of the way punctuation was dealt with is as follows: 

 

1. Read a ‘word’ (a string delimited by a space) from the input corpus. 

2. If the word begins with any punctuation marks, e.g., “ ‘ ( [ { , then strip from the word. 

3. If the word contains a hyphen or a slash, then the characters either side are 

separated into two individual words. 

4. If the penultimate character is an apostrophe, then do not remove it.  This preserves 

two-word contractions such as I’m and don’t .   

5. If word ends with punctuation marks, e.g., ? ! , . : ; “ ‘ ) ] } , then strip from the word. 

6. Finally, with the resultant word, convert any uppercase letters to lowercase. 
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Fig. 4.1 – Showing the flow of data through the system and how each tool interacts.  
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4.2 Remove function words 

 

This program takes a corpus (pre-processed by the program described above) and a 

specified list of function words, then simply works by the following steps: 

 

1. Read in next word. 

2. If word is a specified function word then do nothing. 

3. Else output word . 

 

Repeat the procedure until all words from corpus have been read.  The output from this 

program is a corpus of content words, since all the specified function words have been 

filtered out.  The purpose for this tool may not be entirely obvious, but the output is used by 

other tools later in the pipeline that require just the content words of the original corpus. 

 

4.3 Find n most frequent words 

 

This tool, quite plainly, will find the most frequent words in a given body of text.  The number 

of words required is specified by the user, and the output is a list of words with their absolute 

frequency of occurrence within the text, sorted in descending order of frequency (i.e., the 

highest frequency first).  The program was originally to be written from scratch.  Fortunately, 

Hughes (1994) described a method of combining a number of core UNIX tools to perform 

this task.  As a result, the tool written for this project was largely inspired from Hughes’ 

method to avoid unnecessary reengineering. 

 

By inputting the corpus with function words filtered out, this tool will give the most frequent 

content words in the corpus.  This is necessary because the entire corpus will not be 

clustered, only those that occur often enough as they contain some valuable information.  

 

4.4 Indexing 

 

The use of indexing is purely for efficiency – at least in the context of this project.  This tool, 

given a list of words to index, will search through a given corpus and record the position of 

each occurrence of the specified words.   
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To illustrate with a toy example on the following sentence: “the cat sat on the mat”.   

 

 

 

 

 

 

 

 

 

 

The above example may not look very impressive, but word indexes have a variety of 

applications, including information retrieval in the form of inverted files, and concordance5.  

For the purposes of this project, the word index makes the process of gathering the 

distributional data of a given word much more efficient. 

 

4.5 Distribution 

 

This is the program that gathers the all-important distribution information – the context 

measurement for the subsequent clustering process.  For the program to function, it requires 

an indexed list of function words, and an indexed list of content words.  It then processes 

each possible combination of function word and content word in the following manner: 

 
For each content word, c 

  For each function word, f 

    For each occurrence of c, at position x 

      For each occurrence of f, at position y 

        If x is inside the window of y then record its relative position 

 

The window refers to the number of words either side of the target word that is to be 

considered when recording the occurrences of the target content word.  In the examples 

used in section 3, the window was ±4. 

 

                                                 
5 “Comprehensive listing of a given item in a corpus (most often a word or a phrase), also showing its 

immediate context.” (Oakes 1998) 

Word the cat sat on the mat 

Position 1 2 3 4 5 6 

 

 

Word cat mat on sat the 

Index 2 6 4 3 1, 5 

Fig. 4.2 – Demonstrating how words are indexed. 
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Using the word index created in Fig. 4.2, with a window of ±4, let the target function word be 

the and target content word be cat.   

 

Relative position -4 -3 -2 -1 1 2 3 4 

Freq 0 1 0 0 1 0 0 0 

Fig. 4.3 – Collecting distribution data from word indexes.  

 

4.6 Clustering 

 

The clustering program involves a number of important steps.  After reading the distribution 

data produced from the previous step, it must first convert that data into vectors as 

demonstrated in section 3.2.  The data from the distribution program is ordered by content 

word, and then by function word, which makes creating the function word profile vector for 

each content word much simpler. 

 

The distance matrix is created, and each vector is compared using a specified metric.  Once 

the distance matrix is filled, the clustering using a specified algorithm can commence.  

Clustering will continue to group words together until the predetermined number of clusters 

is reached. 

 

On completion of the clustering, the clusters are outputted for the user. 

 

4.7 Choice of programming language 

 

The choice of programming language should not alter the actual functionality of the software.  

However, it may determine the methodology employed to solve the problem in terms of 

design and implementation.  The main categories are procedural languages, functional 

languages, logical languages and object-orientated languages.  C++ was used to implement 

the algorithms in this project, which falls somewhere in between a procedural and object 

orientated language 6.  The pros and cons of each programming language shall not be 

discussed here.  Needless to say, reasons for its selection include: its ability to cope easily 
                                                 
6 C++ is essentially the procedural language of C, with object-orientated capabilities added on top.  To 

some, such a recipe leaves C++ unfavourable, to others it is beneficial as it gives the best of both 

worlds. 
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with numerical manipulation; can handle large data structures in memory; execution speed 

of C++ code compared other popular languages for NLP such as Perl and POP-11 (due to 

their suitability for symbolic manipulation) is considerably quicker since it is compiled into 

machine code, rather than run by an interpreter. 
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5 Experiments 

5.1 Factors 

 

The following factors can be experimented with: 

 

• Type of corpus 

• Size of the corpus 

• Number of function words 

• Number of content words to be clustered 

• Size of the window 

• Metric used 

• Clustering algorithm used 

• Number of resulting clusters 

 

There is clearly plenty of scope for research into how the above factors affect the overall 

performance of the clustering.  However, due to time restrictions, only a selection of the 

above factors will be investigated. 

 

As discussed in section 3.4, the English corpora for this project are the 427,000 word Don 

Quixote text and the one million word LOB corpus.  The first two factors will remain static 

with these two corpora and their respective sizes.  The number of content words will stay 

fixed on 500. 

 

5.2 How to evaluate clusters 

 

It is first necessary to describe the method of evaluation in order to understand how the 

performance of the clustering was measured.  Without a reliable approach, it would not be 

possible to quantify the effects of a given factor. 

 

Hughes (1994) outlined an excellent approach to automatically evaluating the clusters his 

algorithms produced.  He used a pre-tagged LOB corpus, where all words had been 

assigned an appropriate part-of-speech.  However, the LOB tagset comprises of over 130 

separate tags, which was too detailed, therefore, he devised the reduced LOB tagset.  This 

shrinks the tagset to only 23 parts-of-speech. 
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Reduced Tag Replaced Tags Type of Item 
ADJ J* Adjective 
ADV R* Adverb 
ART A* Article 
CCON CC* Coordinating conjunction 
CARD CD* Cardinal numeral 
DET DT*  PP$* Determiner 
EX EX Existential there 
EXPL U* Interjection 
LET Z* Letter of the alphabet 
MD MD Modal auxiliary verb 
NEG XNOT Negator 
NOUN N* Noun 
ORD O* Ordinal numeral 
OTH &* Foreign words, formulas 
PAST BED DEBZ BEN DOD 

HVD HVN VBD VBN 
Past tense verb 

PREP I* Preposition 
PRES BE BEG BEM BER 

BEZ DO DOZ HV 
HVG HVZ VB VBG 
VBZ 

Present tense verb 

PRON P* (not PP$*) Pronoun 
PUNC ! ( ) , . … ; : ? *.. Punctuation 
QUAL Q* Qualifier 
SCON CS* Subordinating conjunction 
TO TO Infinitive marker 
WH W* WH-word 

Table 5.1 – The reduced LOB tagset.  Note * is a wildcard character, e.g., J* means any tag 

beginning with the letter J and any letter after. 

 

The automatic approach to evaluate a given cluster works as follows: 

 

1. For each word, lookup in the LOB corpus and find any tags that it has assigned to it 

(from the reduced tagset). 

2. Determine which is the most common tag for that cluster. 

3. Calculate the ratio of the number of words in the cluster that possess the most 

common tag, to the total number of words in the cluster.  Return as a percentage. 

 

The Don Quixote corpus contains words that do not appear in the tagged LOB corpus.  For 

any word that does not appear in the LOB corpus, then it is simply assigned “UNK” to 

represent that its part-of-speech is unknown. 
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5.3 Effect of clustering algorithm 

 

It was anticipated that the clustering algorithm would have a profound effect on the eventual 

clustering accuracy.  Each algorithm behaves differently, therefore it was a reasonable 

assumption to make, and was backed up by this experiment:  number of clusters = 100; 

number of function words = 25; window size = 12. 

 

Algorithm Corpus Metric 
Complete 
linkage 

Group 
average 

Weighted 
group average 

Ward's 
method 

Euclidian 82.2% 86.5% 83.6% 77.2% LOB 
 

Manhattan 80.9% 83.5% 85.6% 77.1% 
Euclidian 74.9% 78.2% 77.2% 77.2% Don Quixote 
Manhattan 73.9% 84.5% 82.7% 68.7% 

Table 5.2 – The effect of the clustering algorithm on the clustering accuracy. 

 

Perhaps more interesting than the varying nature than the algorithms themselves, is the role 

that the metric plays.  In Fig. 5.1, the effect of the metric is illustrated clearly, and can alter 

the performance of the subsequent clustering considerably.  There is a difference of 8.5% 

between the two metrics when used with Ward’s method.  It is not entirely obvious why this 

is the case.  For the larger LOB corpus, Ward’s method performs almost equally with either 

metric.  In fact, differences between the metrics are much less pronounced in the LOB 

corpus, which suggests that the size of the corpus is influencing the overall performance. 
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Fig. 5.1 – A graph plotting the effect of the clustering algorithms for the Don Quixote corpus.  
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Regardless of the metric, overall, Group Average performs the best of the four algorithms 

used.  Closely followed by Weighted Group Average, Complete linkage and finally Ward’s 

method.  This order nearly always remains for any given cluster size, number of function 

words and window size.  There are a few exceptions to the rule, where for example weighted 

group average may perform slightly better than group average. 

 

5.4 Effect of number of function words 

 

Due to much of the project revolving around the function words, it makes sense to 

investigate the role they play.  Fifty function words were selected (see Table 3.1); the n 

highest ranking function words were used, and the distribution of the target content words 

were profiled against those n words.   

 

The first experiment looked at the relationship between the clustering algorithm employed, 

and the number of function words.  Fig. 5.2 shows the results for an experiment where: 

corpus = Don Quixote; number of clusters = 100; window size =12; metric = Euclidian. 
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Fig. 5.2 – Graph plotting the relationship between the clustering algorithm and the number of 

function words used for the Don Quixote corpus. 
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There is a trend that suggests the greater the number of function words used, the better the 

clustering accuracy.  However, it is clearly not a smooth slope.  In fact, the relationship is 

much more erratic if the corpus is switched to LOB (see Fig. 5.3). 
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Fig. 5.3 - Graph plotting the relationship between the clustering algorithm and the number of 

function words used for the LOB corpus.  

 

Focusing on the relationship between the number of function words and the window size are 

related.  Table 5.3 shows the results from an experiment where: number of clusters = 100; 

clustering algorithm = Group Average; metric = Manhattan. 

 

DQ LOB 
Window size Window size 

Num. of 

function words 4 8 12 4 8 12 

5 72.0% 73.9% 78.3% 77.0% 79.9% 80.6% 
10 72.5% 76.5% 81.7% 80.7% 83.3% 84.7% 
15 74.8% 75.5% 81.1% 81.7% 84.4% 86.3% 
20 75.8% 77.7% 82.7% 84.1% 85.5% 87.0% 
25 75.4% 78.2% 84.5% 83.0% 85.6% 83.5% 
30 77.3% 78.1% 83.6% 85.1% 85.5% 86.7% 

Table 5.3 – The clustering accuracy for number of function words against the window size. 
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The results show again that in general, for any window size, the greater the number of 

function words used, the better the accuracy.  Fig. 5.4 shows the above results for the LOB 

corpus in a visual form, to give a better feel of the behaviour.  Initially, the performance 

increased substantially for each increment of 5 function words, however, it slows down by 20 

function words.  Performance in fact dips when the number of function words is at 25.  The 

decline in performance looks worse than it really is from the graph due to the scale of the y-

axis.  It is a mere one percent. 
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Fig. 5.4 – Graph showing how the number of function words affects the clustering accuracy 

with respect to the window size used, for the LOB corpus.  

 

Finally, investigating the effect of the number of function words for different numbers of 

clusters.  Unfortunately, only a weak link was found.  As Fig. 5.5 shows (number of clusters 

= 100; window size = 12; clustering algorithm = Group Average; metric = Manhattan; corpus 

= Don Quixote), performance was rather irregular (even more so with the LOB corpus), thus 

a reliable conclusion as to how these two factors behave together cannot yet be obtained.  It 

does seem  to increase as the number of function words increases.  The difference between 

the performance for five and thirty function words is considerable.  However, with so many 

peaks and troughs in between, it suggests that the number of resulting clusters has a greater 

influence on the overall performance which is why this experiment returns vague results. 
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Fig. 5.5 – Graphs plotting the relationship between the number of function words and number 

of resulting clusters.  
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5.5 Effect of window size 

 

The effect of varying the window size can be demonstrated from the following experiment, as 

shown in Table 5.4, where: Number of clusters = 100; number of function words = 25.  The 

table is quite large as it shows the different window sizes for each clustering algorithm, with 

each metric for both corpora.  Looking along each row, it is easy to see that generally, as the 

window size increases, the clustering performance improves.   

 

Window size Corpus Metric Algorithm 
2 4 6 8 10 12 

Complete linkage 71.3% 72.2% 71.8% 73.6% 72.2% 74.9% 
Group Average 74.1% 76.0% 77.5% 78.4% 79.2% 78.2% 
Weighted group 
average 73.5% 75.3% 74.7% 75.6% 76.5% 77.2% 

Euclidian 

Ward's method 69.8% 69.8% 70.2% 71.6% 70.6% 71.3% 
Complete linkage 72.3% 73.9% 74.7% 71.4% 69.9% 73.9% 
Group Average 74.7% 75.4% 75.2% 78.2% 79.1% 84.5% 
Weighted group 
average 75.2% 75.0% 72.7% 76.2% 78.8% 82.7% 

D.Q. 

Manhattan 

Ward's method 70.4% 71.0% 72.4% 70.4% 70.5% 68.7% 
Complete linkage 75.4% 77.6% 78.4% 79.3% 80.1% 82.2% 
Group Average 81.0% 81.4% 84.2% 85.3% 87.3% 86.5% 
Weighted group 
average 80.3% 81.1% 83.6% 84.1% 82.8% 83.6% 

Euclidian 

Ward's method 74.8% 72.7% 77.5% 78.4% 78.3% 77.2% 
Complete linkage 80.3% 79.3% 80.1% 80.8% 82.5% 80.9% 
Group Average 83.6% 83.0% 83.9% 85.6% 86.7% 83.5% 
Weighted group 
average 82.7% 83.1% 84.9% 85.2% 82.6% 85.6% 

LOB 

Manhattan 

Ward's method 76.1% 76.6% 78.0% 79.7% 79.6% 77.1% 

Table 5.4 – The clustering accuracy for different window sizes.  

 

As with all the factors investigated so far, it is not a steady, linear increase.  The change in 

accuracy can be uneven.  This is depicted more visibly in Fig. 5.6. 

 

5.6 Effect of the number of clusters 

 

This factor was the easiest to predict.  At risk of sounding like a scratched record, it was 

expected that the greater the number of clusters, the better the clustering accuracy.  If the 

number of clusters was equal to the number of content words to be clustered, then the 

performance of the clustering would be 100% accurate.   
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Fig. 5.6 – The effect of the window size for the different clustering algorithms.  (Metric = 

Manhattan) 

 

That is because each cluster is simply an individual word and so the method to automatically 

evaluate a cluster will always return 100%.  Conversely, if the number of resulting clusters 

was simply a single cluster, then the accuracy would be very poor.  The one cluster contains 

all the content words to be clustered, and cannot all be satisfied with a single part-of-speech 

that will be assigned to it by the automatic evaluation.   

 

The prediction was confirmed with the following experiment, where: number of function 

words = 25; window size = 12; metric = Euclidian.   Fig. 5.7 reveals the influence the 

resulting number of clusters has, for each of the clustering algorithms used.  There is a fairly 

linear rise in clustering accuracy as the number of clusters increases. 
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Fig. 5.7 – The relationship between number of clusters and clustering algorithm. 

5.7 Semantic Clusters 

The results gathered so far are only indicative of how well the clustering has performed on a 

syntactic level.  Judging semantic similarity is not easily quantifiable and is more subjective 

than with syntax.  Nonetheless, many clusters exhibit groups with semantic similarity.  

Interesting examples from the LOB corpus include: 
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Good examples can also be found in the resulting clusters from the Don Quixote corpus. 

 

 

 

 

 

 

 

 

 

Fig. 5.9 – Examples from the Don Quixote corpus of clusters showing similar semantic 

properties.  

Cluster 58 has grouped together proper nouns that feature in the novel. 

5.8 Alternative language 

 

Experimentation with the Spanish corpus was not as comprehensive as with the English 

corpora.  Emphasis was purposely placed on understanding how the clustering process 

worked with English.  The motivation for clustering an alternative language is to investigate 

whether the described method is non-language specific. 

 

The style of experimentation remained as close to the ones performed on the English 

corpora.  The first notable difference was the function words.  The words listed in Table 3.1 

had to be translated into their Spanish equivalent.  This was straightforward in itself, 

although the translated list was longer due to many words being assigned to a gender.   

Cluster 61 
 
dr  
miss  
mr  
sir  
mrs  
NOUN 100% 

 

 

Cluster 82 
  
her  
his  
my  
your  
herself  
him  
them  
himself  
PRON 100% 

 

Cluster 49 
 
committee  
council  
government  
party  
development  
education  
food  
water  
law  
music  
NOUN 100% 

Fig. 5.8 – Examples from the LOB corpus of clusters showing similar semantic 

properties.  

Cluster 21 
 
arm  
ass  
head  
horse  
sword  
armour  
mouth  
arms  
NOUN 100% 

 

Cluster 58 
 
dapple  
fernando  
panza  
toboso  
UNK 100% 

 

Cluster 74 
 
eyes  
feet  
face  
hand  
words  
hands  
NOUN 100% 
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The most significant difference is the method for evaluating the resulting clusters.  A large 

tagged Spanish corpus comparable in size and detail (in terms of its tagset) to the LOB 

corpus was not readily available.  A tagged Cuban-Spanish corpus was found though it only 

contained approximately 16,000 words, with 3,000 distinct word tokens.  Although only 500 

words from the Don Quixote corpus were clustered, there were many words that didn’t 

feature in the tagged corpus.  Therefore, the tagged corpus was manually supplemented 

with those missing words, and their parts-of-speech were obtained from Collins Spanish 

Dictionary (Sinclair 1998).  The tagset used for the corpus was small, and unfortunately did 

not differentiate between different types or tenses of verbs. 

 

Tag Type of item 

ART Article 

ADJ Adjective 

ADV Adverb 

CCON Conjunction 

EXPL Interjection 

NOUN Noun 

PREP Preposition 

PRON Pronoun 

VERB Verb 

Table 5.5 – The tagset used for the Spanish corpus.  

 

Unsurprisingly, the same properties identified in the English experiments were present in the 

Spanish experiments.  That is, the window size, number of function words and number of 

resulting clusters improves the clustering accuracy.  Group Average once again the highest 

performing algorithm, and the Manhattan metric consistently outperformed the Euclidian 

metric for the experiments carried out.  These observations are summarised in Table 5.6. 
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Number of Clusters Metric Clustering 
Algorithm 80 85 90 95 100 
Complete 
Linkage 74.45% 75.05% 75.70% 76.70% 77.60% 
Group Average 81.15% 81.55% 81.93% 82.00% 82.33% 
Weighted Group 
Average 79.86% 79.72% 80.91% 80.62% 81.06% 

Euclidian 
 

Ward’s Method 73.07% 74.45% 74.46% 74.88% 75.63% 
Complete 
Linkage 74.96% 75.73% 76.32% 76.41% 76.23% 
Group Average 84.77% 85.38% 85.38% 85.30% 85.82% 
Weighted Group 
Average 80.10% 80.37% 81.52% 82.45% 83.31% 

Manhattan 
 

Ward’s Method 73.75% 75.16% 75.12% 76.56% 76.87% 

Table 5.6 – Summary of results showing the clustering accuracy for the Spanish Don Quixote 

corpus. 

5.8.1 Semantic Clustering  

 

There were many promising examples of clusters displaying similar semantic properties.  

This is encouraging considering the size of the corpus.  With the Spanish corpus, it was 

comparatively common to find clusters containing the same verb in different tenses.  For 

example, cluster 68 lists the verb to be in various tenses.  Cluster 13 consisted of similar 

adjectives, and cluster 86 held nouns of parts of the body. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10 – Examples of clusters displaying similar semantic properties.  

 

 

Cluster 13 
 
aquel that (one) 
aquella that (one) 
esta this 
este this 
aquellas those 
mi my 
su his/her 
sus his/her 
tu your 
mil thousand 
ADJ 100% 
 

Cluster 86 
 
manos hands 
ojos eyes 
pies feet 
marido husband 
NOUN 100% 
 

Cluster 68 
 
era  
es  
fue  
eran  
son  
eres  
sean  
VERB 100% 
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6 Future Work 

 

There is still a great deal that could be done to improve and expand the research undertaken 

by this project. 

 

6.1 More experiments 

 

The experiments in section 5 would have benefited greatly if each varying factor could have 

been tested more comprehensively.  For example, the number of resulting clusters only 

ranged from 50 to 100 in increments of 5.  It would have been desirable to expand the range 

and reduce the size of the increment.  Not just for the number of clusters, but for all factors 

being investigated.  Also, some of the factors remained relatively static throughout the 

experimentation.  Namely the number of content words to be clustered, but also the type and 

size of corpora.  These factors also need to be understood. 

 

6.2 Automatically obtaining function words 

 

In order to reduce the dependence of expert linguistic knowledge for the entire clustering 

process, the method of obtaining the function words needs to be revised.  This process 

needs to be automatic.  This could simply consist of taking the top n ranking words from a 

given corpus and assuming those words are the function words.  This could be rather 

unpredictable, given that it relies on the type and size of corpus.  An example highlighted by 

Manning and Schütze (2000) showed the frequency counts of the most common words in 

Tom Sawyer by Mark Twain.  The 14th most common word was Tom.  Such a problem is 

normally overcome by using a large corpus, which contain samples from many different 

sources.  Elliott (2000a and 2000b) has found that function words can be obtained by 

combining relatively small samples from at least 3 sources: “Three text samples of a few 

thousand words [are] OK, but four is better to filter out the more common content words.” 

(Elliott, personal communication) 
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6.3 Improving the context measure 

 

It is worth exploring the effect of the context measure to see if it can be refined.  The context 

measurement in this project was the distribution of a target content word against the target 

function words.  It would be possible to experiment with assigning weights to certain 

attributes which are believed to be valuable.  For example, the occurrence of a target 

content word positioned next to a target function word would be more informative than if the 

occurrence was five words away.  As a result, a greater emphasis could be placed on words 

that appear next to each other.  Alternatively, it is worth looking at where they do not occur.  

Recalling the example distribution displayed in Fig. 3.1, for ‘in’ and ‘the’.  The fact that the 

never occurred immediately before in is equally informative (if not more so) than the fact that 

the occurs most frequent immediately after in.  Of course, this particular approach becomes 

less useful for rarer content words; since there are so few occurrences that it would be hasty 

to attempt any inference. 

 

6.4 Incremental learning 

 

There is clearly more information that can be extracted from the most frequently occurring 

words.  As mentioned in the previous paragraph, certain observations can be made about 

words which frequently occur together and which ones do not, providing there is enough 

evidence to support them.  These observations could be relied upon as rules, which would 

be much more dependable, than clustering by similarity alone.  These rules could be built up 

incrementally, to overcome the data sparseness problem, for example, using the two most 

frequent words of a given corpus, e.g., the and of.: 

 

1.  It will be observed that the never comes immediately before of.  As these are the highest 

ranked words in the corpus, it can be assumed to be a rule. 

   

2.  Then, observing the distribution of the 100 most frequent words of the corpus, all words 

that behave similarly to of can be found. 

 

3.  If they also never occur immediately after the, then the rule can be altered to: 

 ‘Words that cluster with of never occur immediately after the’, or ‘Prepositions never follow 

the’.   
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4.  If words that cluster with the are found to behave similarly, then the amended rule would 

be: ‘Words that cluster with the are never followed immediately by words that cluster with of’,  

or ‘Prepositions never follow determiners’.   

 

By comparing how a word behaves with a given word class, rather than another word,  data 

sparseness is reduced, and should allow more accurate clustering for rarer words. 

 

6.5 Other languages 

 

The use of a second language to investigate the performance of the clustering techniques 

described in this report returned positive results.  It confirmed the theory that clustering 

algorithms should not be troubled with another language – it is an unsupervised process and 

does not require prior knowledge of the language to be clustered.  However, different 

languages can vary greatly in their behaviour.  Manning and Schütze (2000) mention that the 

English language lends itself more favourably for inferring part-of-speech from its position, 

compared to other languages.  “In many other languages, word order is much freer, and the 

surrounding words will contribute much less information about part of speech.”  Therefore, 

more thorough experimentation needs to be carried out.  Obtaining better resources will be 

essential.   A larger corpus would be beneficial, as too would be a larger tagged corpus for 

more reliable evaluations. 

 

There is no reason to limit this technique to human languages.  Potentially NLL techniques 

could be applied identify features in other ‘language-like’ datasets, such as birdsong, signals 

from dolphins and whales etc.  Also there is the potential to search through sequences of 

DNA to seek patterns automatically. 
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7 Conclusions 

7.1 Review 

 

The aim of the project was to investigate an approach to automatically acquire word 

classification.  After reviewing many methods for tagging, a clustering approach was adopted 

due to its appropriateness for tasks that need to be unsupervised.  The context 

measurement was decided to be the relative distribution of a target content word against the 

most frequent function words.  An algorithm was implemented that could extract this 

distributional information from an inputted corpus.  This data was converted in a vector that 

represented the distribution of the content word and placed into a high-dimensional vector 

space.  A variety of metrics and clustering algorithms were implemented which could made 

use of the populated vector space, created a distance matrix which then established which 

words were similar.   

 

A tool was developed to automatically evaluate the clusters that were produced by the 

clustering process.  Such a tool proved to be essential due to the number of experiments 

that were performed.  For the English language: 

 

Factor Number Values 

Number of corpora 2 LOB and Don Quixote 

Number of cluster sizes  11 55 – 100 in increments of 5 

Number of function words 

used 

6 5 – 30 in increments of 5 

Number of window sizes 6 2 – 12 in increments of 2 

Number of metrics 2 Euclidian and Manhattan 

Number of clustering 

algorithms7 

8 Single linkage, Complete linkage, Group 

average, Weighted group average, Median, 

Centoid, Centre of gravity, Ward’s Method 

 

The total number of experiments = 2 x 11 x 6 x 6 x 2 x 8 = 12,672. 

(The number of Spanish experiments only totalled to 480) 

                                                 
7 As mentioned in section 3.3.3, eight algorithms were originally implemented, but four performed 

unsatisfactorily and so not considered in any evaluation for the experiments.  However, they still had 

to be run in order to discover their lack of suitability to this particular problem. 
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7.2 Experimental findings 

 

With regards to investigation with English corpora: 

 

• Clustering accuracy was higher for the LOB corpus by a mean average of 6.5%.  

This was expected due to the LOB corpus being over twice the size as Don Quixote.  

Of course, the two corpora are quite different in style, so a direct comparison is not 

appropriate.  

• The best clustering algorithm was found to be Group Average from the automatic 

evaluation for both corpora. 

• The metric had varying success – its effect was dependent on other factors, e.g., the 

algorithm used, and the corpus too.  Overall, Manhattan performed better with the 

smaller Don Quixote corpus, and Euclidian worked better with the LOB corpus.  Lund 

and Burgess (1996) and Hughes (1994) both found Manhattan produced the better 

results, which fits Shepard’s (1980) theory that lower values for m in Minkowski’s 

general distance equation, are more suitable for extracting semantic information. 

• The clustering performance improved as the number of function words used was 

increased. 

• Clustering accuracy was generally enhanced as the window size increased.  This is 

likely to be due to the fact that the maximum function word separation is eight words, 

as observed by Elliott (2000a).  This means that for any content word, there will 

always be a function word no greater than ±4 words (equivalent to a window size of 

eight). 

• The number of resulting clusters had a great influence on the effectiveness of the 

clustering.  The greater the number of clusters, the better the performance.  As 

discussed however, it is important to find the right balance between the number of 

content words being clustered and the resulting number of clusters.  There is little 

information to be gained when the number of clusters is close to either extreme (i.e., 

very small or close to the number of content words). 

• Even with the small Don Quixote corpus, the highest accuracy of the clusters 

managed to reach 84.7%.  With the LOB corpus, an accuracy of 87.8%. 

• Good evidence of semantic clustering was found for both corpora.  Even words such 

as ‘a’ and ‘an’ which could potentially cause trouble (since the words that follow 
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immediately after are mutually exclusive) were grouped together within the same 

cluster. 

 

The clustering techniques also showed promising results when the Spanish Don Quixote 

corpus was used.  Although the tagged corpus was relatively small, as too was the tagset, it 

was still adequate for the preliminary studies into the effectiveness of clustering an 

alternative language. An accuracy of 85.8% was achieved and semantic groups were 

frequent in the resulting clusters.  This shows that the function word profiles were an 

effective context measure.  

 

The experimental findings indicate that the method proposed by this report is a feasible way 

for automatically acquiring word classification.  A high degree of success was accomplished 

even with comparatively small corpora.  Admittedly, stronger semantic clustering was found 

in the larger LOB corpus, and can be found in other experiments involving vast corpora (see 

section 3.4). 

 

Appendix D gives a sample output of the clustering software where: 

 

• corpus: LOB 

• clustering algorithm: Complete Linkage 

• metric: Manhattan 

• number of resulting clusters: 100 

• number of function words: 25 

• window size: 12 

 



 

 50 

References 

 

(Atwell 1987) Eric Steven Atwell. A Parsing Expert System which Learns from Corpus 

Analysis. In Willem Meijs (ed) - Corpus Linguistics and Beyond: Proceedings 

of the ICAME 7th International Conference on English Language Research on 

Computational Corpora, pp227-235, Amsterdam, Rodopi. 1987. 

 

(Atwell and Drakos 1987) Eric Steven Atwell and Nikos Drakos. Pattern Recognition 

Applied to the Acquisition of a Grammatical Classification System from 

Unrestricted English Text. In Bente Maegaard (ed) - Proceedings of the Third 

Conference of European Chapter of the Association for Computational 

Linguistics, pp56-63, New Jersey, Association for Computational Linguistics. 

1987. 

 

(Baker 1975) J.K. Baker. Stochastic Modelling for Automatic Speech Understanding. In D.R. 

Reddy (Ed) - Speech Recognition. Academic Press. New York. 1975. 

 

(Baker 1979)  J.K. Baker. Trainable grammars for speech recognition. In D.H. Klatt and J.J. 

Wolf (Eds) - Speech communication papers for the 97th meeting of acoustical 

society of America, pp547-550. 1979 

 

(Chomsky 1957) Noam Chomsky. Syntactic Structures. The Hague: Mouton. 1957. 

 

(Chomsky 1964) Noam Chomsky. Current Issues in Linguistic Theory. The Hague: 

Mouton. 1964 

 

(Church 1988)  K. W. Church. A stochastic parts program and noun phrase parser for 

unrestricted text. In Second Conference on Applied Natural Language 

Processing, pp. 136-143. ACL. 1988. 

 

(Cutting et al. 1992) D. Cutting, J. Kupiec, J. O.  Pedersen and P. Sibun. A Practical part-

of-speech tagger. In Third Conference on Applied Natural Language 

Processing, pp. 133-140. ACL. 1992. 

 



 

 51 

(Dempster et al. 1977) A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum 

likelihood from incomplete data via the EM algorithm. Journal of the Royal 

Statistical Society, 39(1), 1-21. 1977. 

 

(Elliott et al. 2000a) J. Elliott, E. Atwell and W. Whyte. Increasing Our Ignorance of 

Language: Identifying language Structure In An Unknown Signal. In: 

Proceedings of 4th International Conference on Computational Natural 

Language Learning, pp 25-30. Association of Computational Linguistics. New 

Jersey. 2000. 

 

(Elliott et al. 2000b)  J. Elliott, E. Atwell and W. Whyte. Language identification in unknown 

signals.  In Proceeding of COLING'2000, 18th International Conference on 

Computational Linguistics, pp1021-1026, Association for Computational 

Linguistics (ACL) and Morgan Kaufmann Publishers, San Francisco. ISBN: 1-

55860-717-X (2 volumes). 2000. 

 

(Everitt 1993) B. Everitt. Cluster Analysis (3rd Edition). Edward Arnold, London. 1993. 

 

(Finch and Chater 1992) S. Finch and N. Chater. Bootstrapping syntactic categories. In 

Proceedings of the 14th Annual Meeting of the Cognitive Science Society, pp 

820-825. Hillsdale, New Jersey. 1992. 

 

(Francis 1979)  W. N. Francis. A tagged corpus – problems and prospects. In S. 

Greenbaum, G. Leech and J. Svartvik (Eds). Studies in English linguistic for 

Randolph Quirk, pp 192-209. Longman, London and New York. 1979. 

 

(Francis and Kucera 1982) W. N. Francis and H. Kucera. Frequency Analysis of English 

Usage. Houghton Mifflin, Boston. 1982. 

 

(Francis and Kucera 1989) W. N. Francis and H. Kucera Manual of Information to 

Accompany a Standard Corpus of Present-Day Edited American English, for 

use with Digital Computers (Corrected and Revised edition). Department of 

Linguistics, Brown University, Providence, Rhode Island. 1989. 

 

(Garside 1987) R. Garside. The CLAWS word tagging system . In R. Garside, G. 

Leech and G. Sampson (Eds), The Computational Analysis of English, pp. 

30-41. Longman, London. 1987. 



 

 52 

(Garside et al. 1997) R. Garside, G. Leech and A. McEnery. Corpus Annotation. Longman, 

London and New York. 1997. 

 

(Greene and Rubin 1971) B. B. Greene and G. M. Rubin. Automatic grammatical tagging 

of English. Department of Linguistics, Brown University, Providence, Rhode 

Island. 1971. 

 

(Harris 1962) S. Z. Harris. String Analysis of Sentence Structure. Mouton, The Hague. 1962. 
 

(Haslerud and Stenström 1995) V. Haslerud and Anna-Brita Stenström. The Bergen 

Corpus of London Teenager Language (COLT). In G. Leech, G. Myers & J. 

Thomas (eds.). Spoken English on computer. London: Longman, 235–242. 

1995. 

 

(Hughes 1994) John Hughes. Automatically Acquiring a Classification of Words. PhD 

Thesis. School of Computer Studies, University of Leeds. 1994. 

 

(Johansson et al. 1986) S. J. Johansson, E. S. Atwell, R. Garside and G. Leech. The 

tagged LOB Corpus. Users’ manual. The Norwegian Centre for the 

Humanities, Bergen. 1986. 

 

(Jurafsky and Martin 2000) Daniel Jurafsky and James H. Martin. Speech and Language 

Processing. Prentice Hall. New Jersey. 2000. 

 

(Kiss 1972) G. R. Kiss. Grammatical Word Classes: A Learning Process and its 

Simulation. Psychology of Learning and Motivation. 7. pp1-41. 1972. 

 

(Klein and Simmons 1963) S. Klein and R. F. Simmons. A computational approach to 

grammatical coding of English words. Journal of the Association for 

Computing Machinery, 10(3), 334-347. 1963. 

 

(Kucera and Francis 1967) H. Kucera and W.H. Francis.  Computational analysis of 

present-day American English. Brown University Press, Providence, Rhode 

Island. 1967. 

 



 

 53 

(Lance and Williams 1967) G.N. Lance and W.T. Willams. A General theory of 

classification sorting strategies. 1. Hierarchical Systems, Comp. J., 9, pp373-

380. 1967 

 

(Leech 1993) G. Leech. 100 Million Words of English: The British National Corpus (BNC) 

Project. English Today. 1993. 

 

(Leech et al. 1994) G. Leech, R. Garside and M. Bryant. Claws4: The tagging of the 

British National Corpus. In COLING-94, Kyoto, pp. 622-628. 1994. 

 

(Levy and Bullinaria 2001) J.P. Levy and J.A. Bullinaria. Learning Lexical Properties from 

Word Usage Patterns: Which Context Words Should be Used? In: R.F. 

French & J.P. Sougne (Eds) - Connectionist Models of Learning, 

Development and Evolution: Proceedings of the Sixth Neural Computation 

and Psychology Workshop, 273-282. London: Springer. 2001. 

 

(Lund and Burgess 1996) K. Lund and C. Burgess, Producing high-dimensional semantic 

spaces from lexical cooccurrence, Behavior Research Method, Instruments, & 

Computers 28(2), pp 203-208. 1996 

 

(Manning and Schütze 2000) C.D. Manning and H. Schütze. Foundations of Statistical 

Natural Language Processing. The MIT Press. Cambridge, Massachusetts. 

2000. 

 

(Marcus et al. 1993) M. P. Marcus, B. Santorini and M. A. Marcinkiewicz. Building a large 

annotated corpus of English: The Penn treebank. Computational Linguistics, 

19(2), 313-330. 1993. 

 

(Marshall 1983) I. Marshall. Choice of grammatical word-class without global syntactic 

analysis: Tagging words in the LOB corpus. Computers and the Humanities, 

17, 139-150. 1983. 

 

(Merialdo 1994) B. Merialdo. Tagging English text with a probabilistic model. 

Computational Linguistics, 20(2), 155-172. 1994. 

 

(Oakes 1998) M. P. Oakes. Statistics for Corpus Linguistics. Edinburgh University Press. 

1998. 



 

 54 

 

(Ormsby 1885) Miguel De Cervantes. Don Quixote de la Mancha.  1665. Trans. John 

Ormsby. 1885. 

 

(Redington et al. 1998) Martin Redington, Nick Chater and Steven Finch. Distributional 

Information: A Powerful Cue for Acquiring Syntactic Categories. Cognitive 

Science, Vol 22 (4), pp 425-469. Cognitive Science Society. 1998 

 

(Shepard 1980) Roger N. Shepard. Multidimensional scaling, tree-fitting, and 

clustering. Science, 210, pp390-398. 1980. 

 

(Simpson and Weiner 1989) J. A. Simpson and E. S. C. Weiner (ed). Oxford English 

Dictionary. 2nd ed. Oxford: Clarendon Press, 1989 

 

(Sinclair 1987)  J. Sinclair. Looking Up: An Account of the COBUILD Project in Lexical 

Computing. Collins, Glasgow. 1987. 

 

(Sinclair 1998)  L. Sinclair (ed). Collins Spanish Dictionary, Plus Grammar. 

HarperCollins, Glasgow. 1998. 

 

(Stolz et al. 1965) W. S Stolz, P. H. . Tannenbaum and F. V. Carstensen. A Stochastic 

approach to the grammatical coding of English. Communications of the ACM, 

8(6), 399-405. 1965. 

 

(Svartvik 1990) Jan Svartvik (ed). The London-Lund Corpus of Spoken English: 

Description and Research. Lund University Press, Lund, Sweden. 1990. 

 

(Taylor and Knowles 1988) L.J. Taylor and G Knowles. Manual of Information to 

Accompany the SEC Corpus: The machine readable corpus of spoken 

English. University of Lancaster. 1988. 

 

(Ward 1963) J. H. Ward. Hierarchical Grouping to Optimize an Objective Function. 

Springer-Verlag, Berlin. 1963. 

 

(Zipf 1949) G.K. Zipf. Human Behaviour and the Principle of Least Effort. Addison Wesley 

Press. New York. 1949. 

 



 

 55 

(Zupan 1982) Jure Zupan. Clustering of Large Data Sets. John Wiley and Sons, Chichester. 

1982. 

 



 

 56 

Appendix A – Reflection on project experience 

 

The final year project was like no other piece of assessed work required during my 

computing degree.  No prior coursework was of a comparable scale of effort.  As a result, I 

was very much unprepared when approaching my project.   

 

My first piece of advice for any student is to select a project that you are actually interested 

in.  Of course, the project is a compulsory component of the degree, however, if you can 

make it more than just a project done for the sake of it, then you will benefit in the long run.  I 

was excited when I began my research.  As a result, I have enjoyed my area of study so 

much that I have altered my career plans in order to stay at the university to do a PhD!  It is 

an excellent opportunity to study a topic that you want. 

 

Your project supervisor will be the most important person in ensuring success with your 

project.  Absorb as much advice as you can.  Yet, students should feel free to seek advice 

from other members of staff within the department.  For projects in the field of NLP, 

resources are not always easy to obtain, e.g., tagged corpora are not freely available.  

Therefore, maintain a good rapport with the academics who can assist you in acquiring 

resources you may need. 

 

For any research project, it is easy to carried away since there is often no limit to what you 

can investigate for a given topic.  Therefore, focus on the core objectives only.  Try to define 

the scope of your project to ensure you do not start going off on a tangent.  My personal 

experience was that I took on more than was required.  I experimented with too many factors 

when I should have honed in on a small selection and performed comprehensive tests on  

just those.  It is a difficult thing to gauge since you are unlikely to have undertaken a project 

this large.  Therefore, seek advice from your supervisor regarding this issue. 

 

A comprehensive literature review is essential for whatever topic you research.  However, it 

may be worthwhile to perform a software review.  A number of tools I personally 

implemented for my project were re-engineering software already freely available.  I simply 

was not aware of their existence at the time.  Thus, I sacrificed a great deal of time writing 

code which could have been better spent on other areas of the project.  The three rules for a 

successful project are: 1) time management 2) time management and 3) time management!
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Appendix B – Discussion paper by Bill Whyte and John Elliott 

 

I am proposing a method which I hope will firstly identify a set of 'word classes' broadly 
equivalent to parts of speech, and secondly, act as the beginnings of a novel part-of-speech 
tagger. The initial motivation is as a way of detecting structural features in completely 
unknown language-like strings. 
 
We have a table with rows headed by function words, typically 10-30 (only 5 shown for 
simplicity) 
 
Fn words -> 
Content 
wrds 

| 
v 

Fn1 Fn2 Fn3 Fn4 Fn5 

      
      
      
      
      
 
and a largish number of common, content words, selected from the test corpora, listed in the 
first column. 
  
We would like to able to (but probably can't without a bit more fiddling - see later) create a 
row of  numbers, each of value from 1-4 (say) for each content word. Each number 
represents the separation between the content word and a function word. 
(NOTE: we need to do this for the cases where the content word precedes the function word 
and where it follows it, but I'm keeping it simple for the time being). 
So,  we can define and enumerate a 'relation' between content word PARROT and the set of 
function words {Fi} e.g. PARROT{ the, of, a, in …..} = {1,3,1,2…….}  
 
OUR BIG HYPOTHESIS: is that if we can calculate enough complete relations for enough 
words, then we'll have got enough examples for every important class of words (i.e. parts of 
speech, sort of) AND we shall see that the relations  for individual words will cluster into 
distinct groups AND it will be possible to use simple clustering techniques which do not rely 
on the complex statistics of word position. 
 
A SIMPLIFICATION: for various reasons, I suggest we try to 'collapse' the behaviour of 
relations for individual words: the relation for content word  'parrot' with respect to function 
word 'the' in the phrase 'the green parrot' has value 2 ('green' comes in between them.) but 
value 1, in the phrase 'the parrot'. The recommendation is, 'for any relation between a word 
and a specific fn word, use the smallest value that occurs for any instance of that word. This 
would seem reasonable, will reduce data processing and I think it will actually help with the 
cluster analysis. Note that we are thereby using 'closest approach to Fi' as a discriminating 
feature.  
 
IF EVERYTHING GOES WELL (but it won't): then we end up with a reasonable number, say 
a few hundred (it needs to that for statistical accuracy), complete relations, i.e. a complete 
set of values for the minimum separation between each of our content words and every one 
of the function words.  
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I'm quite hopeful, in this case, that we will have a number of relations that have the same 
values in them and that the words they relate to will quite reasonably be describable as 
belonging to the same class. I even reckon there is a good chance that 'class' may be 
roughly equivalent to 'part of speech' in the trad sense. So, simply choose the first half dozen 
or so distinct relationships as being word class discriminators.  
 
THE BIG PROBLEM: I see one particularly large problem (plus some others, e.g. polysemy, 
which I won't go into) - quite simply, we won't be able to get a complete set of relation values. 
Remember, we need to seek out lots of occurrences of a lot of content words where each of 
them is within 3 or 4 of each function word. (If they ever are). AND, if we don't get the 
minimal values for each of these distances, then our data is corrupted.   
 
A POSSIBLE APPROACH TO A SOLUTION: firstly, remember that it doesn't matter which 
content words we use specifically. As long as we have enough text, we can hunt around for 
possible solutions for any one word but give up if it's looking bleak and simply choose 
another one.  Secondly, a more complex approach might be to tentatively decide that two 
words are likely to belong to the same word-class, on the basis of a shared similarity 
between their (incomplete) relations and some additional tests (see next para) and allow 
each one to inherit the missing bits from each other. 
So, how do we 'confirm' one of these tentative equivalences? Let's remember that, for any 
one content word, we will probably have acquired a number of non-closest approaches (the 
GREEN parrot, the VERY LARGE parrot etc). We may also have acquired similar for the 
other content word that we think might be of the same class, eg. 'the RED dog', 'the LARGE 
dog' etc. Suppose, instead of throwing these examples away in favour of minimals 'the 
parrot', 'the dog', we keep them stored. Now, suppose we tentatively associate 'parrot' and 
'dog' in the same word class, on the basis of part of their relations being the same, for 
example they both have  {… ….the…..} = {……1……}. [In practice, we'd need more 
similarity]. We now further test the probability of the association by looking at the stored 
data : 
 
 
Fn words -> 
Content 
wrds 

| 
v 

Fn1 Fn2 THE Fn4 Fn5 

      
DOG   Minimal =1 

Non-mins: 
Red 
Large 

  

      
PARROT   Minimal =1 

Non-mins: 
Green 
Very large 

  

      
  
We see they both have 'large' at distance 1.  Therefore, it's looking a bit more probable that 
they are of same class. We can do more than this. Suppose we explore the relations for 'red' 
and for 'green' wrt the function words. If we get a reasonably high correlation, even on partial 
relations, then this is further evidence. 
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RULES AND HEURISTICS: we see that the algorithm has a clearly defined part, that is the 
getting of 'easy' minimals directly and a less clearly defined part which is going to involve a 
bit of trial and error including some heuristics for back-tracking when the approaches in the 
previous para conflict on their categorisation of a specific word. One hopeful point is that we 
don't have to process every word to its end. We are only after a sufficient number and range 
of successful words. Therefore, we may be able simply to throw away examples that are 
looking doubtful or ambiguous. 
 
COMPUTATIONAL ASPECTS 
Suggest that the corpora are stored in a couple of ways that might speed up computation 
significantly. First of all, a simple two dimensional list of word against left-right, top down 
order. E.g. 
If total corpus is Here is a dog. It is called spot, then list is simply: 
1 2 3 4 5 6 7 8 
here is  a dog its name is Spot 
(In practice, we need to think about punctuation). 
 
Secondly, index the words alphabetically and against serial position: 
 
A dog here is its name Spot 
3 4 1 2,7 5 6 8 
 
An additional list with the function words in this way might also be useful.   
If this indexing is done before the rest of the processing, it may make it much quicker to find 
repeated occurrences and to allow backtracking.     
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Appendix C – The LOB corpus tagset 

Tag  Description  Examples  
&FO  formula  10*:-1**: dE *:238**:U a*;n**; T*:-3/2**: E*;p**;(P) 

R*?8r(cdE.cde) ... [See note 1]  
&FW  foreign word  de Welt von Retour Flamme route Musique Ancienne Pro 

unheimliche Opus baraka Biennale Internationale Novum 
sine die cantabile letzt bru"cke ...  

!  exclamation mark  !  
(  opening parenthesis  (  
)  closing parenthesis  )  
*'  opening quotation mark  *' *" [See note 2]  
**'  closing quotation mark  **' **" [See note 2]  
*-  dash  *- [See note 2]  
,  comma  ,  
.  full stop  .  

...  ellipsis  ...  
:  colon  :  
;  semicolon  ;  
?  question mark  ?  

ABL  determiner/pronoun, pre-
qualifier  

such quite rather such-and-such  

ABN  determiner/pronoun, pre-
quantifier  

all half  

ABX  determiner/pronoun, double 
conjunction or pre-quantifier  

both  

AP  determiner/pronoun, post-
determiner  

more most last several next own other many much same 
less former only very few fewer latter least overmuch ain 

kast  
AP"  determiner/pronoun, post-

determiner, ditto  
few good many little [See note 3]  

AP$  determiner/pronoun, post-
determiner, genitive  

latter's former's other's  

APS  determiner/pronoun, post-
determiner, plural  

others  

APS$  determiner/pronoun, post-
determiner, plural, genitive  

others'  

AT  article, singular  a an every  
ATI  article, singular or plural  the no nae ye zee de ze  
BE  verb "to be", infinitive or 

imperitive  
be  

BED  verb "to be", past tense, 2nd 
person singular or all 

persons plural  

were  

BEDZ  verb "to be", past tense, 1st 
and 3rd person singular  

was  

BEG  verb "to be", present 
participle or gerund  

being  

BEM  verb "to be", present tense, 
1st person singular  

am 'm  

BEN  verb "to be", past participle  been  
BER  verb "to be", present tense, 

2nd person singular or all 
persons plural  

are 're art 'rt ai  

BEZ  verb "to be", present tense, 
3rd person singular  

is 's iss ees ai  

CC  conjunction, coordinating  and but or nor as & yet / 'n and/or an' only n'  
CC"  conjunction, coordinating, well as  
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ditto  
CD  numeral, cardinal  1958 13 two 280,000 20 1959 28.5 400 eight 2 1949 six 

seven ten 1,400 16 9.40 five 100 four fifty 89 5.30 287 
million 1/2 2.35 forty nine 6.55 ...  

CD$  numeral, cardinal, genitive  8's 3's 5's 4's  
CD-CD  numeral, cardinal, 

hyphenated pair  
1955-6 15-20 1861-1940 1-6 2-0 3-1 33-1 12-1 300-400 0-3 

10,000-15,000 1611-1961 six-five 51.1-3 280-338/39 ...  
CD1  numeral, cardinal, one  one 1 'un  

CD1$  numeral, cardinal, one, 
genitive  

one's 1's  

CD1S  numeral, cardinal, one, 
plural  

ones 'uns  

CDS  numeral, cardinal, plural  hundreds thousands dozens fifties two-thirds millions 1830's 
'30s forties middle-thirties sevens '20s 30's 1750s 'forties 

nines five-sixths zeros ...  
CS  conjunction, subordinating  though that as while if because before than since whether 

for once except until provided unless although even lest now 
till such so but albeit whereas in considering nisi like whilst 

'n whereupon save altho' tho' directly 'cos 'cause 
immediately  

CS"  conjunction, subordinating, 
ditto  

if that as though so far order  

DO  verb "to do", uninflected 
present tense, infinitive or 

imperitive  

do  

DOD  verb "to do", past tense  did  
DOZ  verb "to do", present tense, 

3rd person singular  
does doth  

DT  determiner/pronoun, 
singular  

another this that each zis zat anudder  

DT$  determiner/pronoun, 
singular, genitive  

another's  

DTI  determiner/pronoun, 
singular or plural  

any some enough  

DTS  determiner/pronoun, plural  these those  
DTX  determiner, pronoun or 

double conjuction  
either neither  

EX  existential there  there  
HV  verb "to have", uninflected 

present tense, infinitive or 
imperitive  

have 've hast of 'ave  

HVD  verb "to have, past tense  had 'd  
HVG  verb "to have", present 

participle or gerund  
having havin'  

HVN  verb "to have", past 
participle  

had  

HVZ  verb "to have", present 
tense, 3rd person singular  

has 's hath ai  

IN  preposition  by from at of on for into since in to with despite round as 
about over without towards behind during under beyond 

after because against outside including among like apart ...  
IN"  preposition, ditto  of from spite with to front as for means opposed top between 

against la regards board versus  
JJ  adjective  large likely out-dated adequate nationalist federal united 

national elected colonial full proposed secret central final 
unsatisfactory gross unconstitutional angry human heavy 

hostile economic monstrous warm-hearted ...  
JJ"  adjective, ditto  up off luxe round cut weight priori hoc vires lived board 

fashioned  



 

 62 

JJB  adjective, attributive-only  left-wing rival chief overall main once-and-for-all prime past 
nuclear-disarming anti-apartheid American-born built-in 89-

year-old joint pro-communist centre second-row top ...  
JJB"  adjective, attributive-only, 

ditto  
army called  

JJR  adjective, comparative  higher better worse easier wider tougher lesser nicer fairer 
worthier prettier neater noisier deeper happier nobler nearer 

slower bolder shallower faster-moving ...  
JJR"  adjective, comparative, ditto  wearing  
JJT  adjective, superlative  best fiercest bitterest largest toughest thorniest rarest 

humblest freshest sweetest clearest best-regulated kindest 
simplest-of-all handsomest strangest tallest ...  

JJT"  adjective, superlative  selling  
JNP  adjective, word-initial capital  African British Rhodesian anti-Negro German Manchu-

Edwardian Yugoslav Asian Congolese inter-African Nazi 
Olympic Ritzy Anglo-American Persian Elizabethan Teutonic 
un-Italian Marxist Ritzy Norman Viking Luddite Presbyterian 

Churchillian Orwellian Kentish ...  
MD  modal auxillary  may will should would can must might could need 'll shall 'd 

ought wilt mayest dared maun cou'd dare shoud shoulda 'ud 
wikk  

NC  cited word  many thanks Jimmy ret -key s nonsense Directors' 
emoluments always only high decadent mouse sous Gita 

Ghita explode ...  
NN  noun, singular, common  life move bill existence institution sentiment abolition 

independence association bureau investigation service post 
present spot sum drain answer rejection blow taxation ...  

NN"  noun, singular, common, 
ditto  

mortem blanche d'oeuvre douloureux garde d'hotel how up 
obscura hoccery d'affaires pectoris grata ego between  

NN$  noun, singular, common, 
genitive  

protectorate's labour's doctor's parliament's man's child's 
hour's airliner's week's conference's regiment's unit's pilot's 

orchestra's river's library's ...  
NNP  noun, singular, common, 

word-initial capital  
Chinese Irishman American Australian Negress English 
Scottish Briton Vansittartism Sinhalese Jew Whitgiftian 

Berliner Gaitskellism Jesuit Lancastrian Belgian 
Augustinianism Amorite Anabaptist Druze Celt Rugbeian 

Highlander ...  
NNP$  noun, singular, common, 

word-initial capital, genitive  
Englishman's Russian's Greek's Hungarian's Eskimo's 
Genoese's Turk's Frenchman's Prussian's Corsican's 

Canadian's ...  
NNPS  noun, plural, common, word-

initial capital  
Africans Americans French Germans Nazis Arabs Anglo-
Saxons Scandinavians Romans Pan-Somalis Berliners 

Ceylonese Cestrians Wearsiders Czechs Hessians 
Victoriana Dalmatians Brownists Bantu Kelts Slavs Medes 

Hindoos ...  
NNPS$  noun, plural, common, word-

initial capital, genitive  
Germans' Tunisians' Americans' Africans' Nyasalanders' 

Spaniards'  
NNS  noun, plural, common  peers nominees steps plans discussions organisations 

drugs conditions opponents details cuts changes foods 
families deeds words supplies measures police cars 

demonstrators ...  
NNS"  noun, plural, common, ditto  d'appui ups  
NNS$  noun, plural, common, 

genitive  
settlers' neutrals' years' pro-communists' nightingales' 

players' footballers' sportsmen's officers' women's staffs' 
contributors' employers' hairdressers' breeders' ...  

NNU  noun, abbreviated unit of 
measurement  

\0s \0min \0mph \0d \0in \0p.c \0lb *+1,755million *+900,000 
*+3,607,000 *+2 *+720 ... [See note 4]  

NNU"  noun, abbreviated unit of 
measurement, ditto  

\0cent cent \0yd [See note 4]  
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NNUS  noun, abbreviated unit of 
measurement, plural  

\0pts \0yds \0gns *+s \0pp \0mins \0hrs \0revs \0galls \0lbs 
\0ins [See note 4]  

NP  noun, singular, proper  Trevor Williams Michael Manchester Foot-Griffiths Bell 
Karen Roy Dennis Welensky Rhodesia Nkumbula Macleod 

Julius Accra Ellender Adenauer George Enoch France 
Corell-Barnes Selwyn ...  

NP$  noun, singular, proper, 
genitive  

Cheung's Griffith's Oxford's England's Guy's Swansea's 
Conroy's Zealand's Kent's London's Reid's Margaret's 

Windsor's Chatterley's Nancy's Sibelius's Shakespeare's 
Khruschev's ...  

NPL  noun, singular, locative, 
word-initial capital  

House Sea Hotel Airport Square Plain Island Palace Loch 
Cape Town River Gallery Yard Cove Park University Parade 

Mount Head Fountain Colliery Shipyard Citadel ...  
NPL$  noun, singular, locative, 

word-initial capital, genitive  
City's Garden's Moor's Theatre's Church's Marsh's College's  

NPLS  noun, plural, locative, word-
initial capital  

Plains Locks Cottages Hills Colleges Universities Schools 
Churches Sands Galleries Marshes Downs Grottos Islands 
Isles Farms Pikes Roads Straits Broads Mountains Steps 
Levels Meadows Precincts Fields Counties Halls Buildings 

Gardens Galeries Woods Fens Towers Prisons Banks 
Moors Villages  

NPLS$  noun, plural, locative, word-
initial capital, genitive  

Universities'  

NPS  noun, plural, proper  Maritimes Wolves Barbarians Wasps Alps Penguins 
Brittains Debenhams Beechams Bents Mitchells Courtaulds 
Salems Spurs Wileys Balkans Lennons Greyfaces Tele-Bins 

Loyals ...  
NPS$  noun, plural, proper, genitive  Bents' Cortaulds' Spurs' Wolves' Josephs' Rovers' Mudlarks' 

Beddises' Loyals' Shadows' Merwes' Caxtons' Marshams' 
Barkers' Frys' Slaytons' Stevens' Apaches' Pentlands' 

Cadwells' Swansons' Robertsons'  
NPT  noun, singular, titular, word-

initial capital  
\0Mr \0MP Sir Premier Secretary Prime Minister President 

Senator \0Dr Prince \0St \0Pres Professor Herr \0Mrs 
\0C.I.G.S Rector \0P.C \0Hon \0Det.-Con \0D.C \0D \0PC 

\0Chief-Insp ... [See note 4]  
NPT"  noun, singular, titular, word-

initial capital, ditto  
\0P  

NPT$  noun, singular, titular, word-
initial capital, genitive  

President's Minister's Premier's Queen's Princess's Duke's 
King's Ambassador's Earl's Chancellor's Regent's Director's 
Lord's Pope's Registrar's Emperor's Lady's Laird's Vicar's 

Commander's Captain's Ma's Rector's Prince's General's ...  
NPTS  noun, plural, titular, word-

initial capital  
\0MPs Lords Chiefs Ministers Comrades \0M.P.s Premiers 
Deans Representatives Saints Presidents Commandants 

Sons \0Messrs \0Clrs Mayors Aldermen Ambassadors 
Directors \0M.P.'s Tsars Emperors \0C.O.'s Rabbis Masters 

Knights Kings Brothers ...  
NPTS$  noun, plural, titular, word-

initial capital, genitive  
Speakers' \0MPs' Sons' Directors'  

NR  noun, singular, adverbial  tomorrow today yesterday south February Monday home 
July tonight Sunday north October September December 

January west east March \0Nov Wednesday to-night south-
east Tuesday August Saturday May June to-day \0Feb April 

north-west \0W ...  
NR$  noun, singular, adverbial, 

genitive  
today's yesterday's to-night's Wednesday's to-morrow's 

west's Sunday's Saturday's tonight's Monday's tomorrow's 
home's  

NRS  noun, plural, adverbial  homes Saturdays Tuesdays Mondays Sundays Fridays 
Thursdays  

NRS$  noun, plural, adverbial, [See note 5]  
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genitive  
OD  numeral, ordinal  second first third thirty-ninth fourth sixth seventh 75th 19th 

3rd 4th 6th 2nd twentieth 1,000th 44th fifteenth ...  
OD$  numeral, ordinal, genitive  [See note 5]  
PN  pronoun, nominal  so anybody nothing no anyone none everything something 

anything nobody someone everybody somebody no-one 
some nuffin' ought somethin' nothin' summat nossings 

somep'n  
PN"  pronoun, nominal, ditto  one  
PN$  pronoun, nominal, genitive  everyone's everybody's anybody's something's anyone's no 

someone's  
PN$"  pronoun, nominal, genitive, 

ditto  
one's  

PP$  determiner, possessive  his their my our its her your thy thine tha 'is yer me  
PP$$  pronoun, possessive  ours mine theirs yours his hers thine  
PP1A  pronoun, personal, 

nominative, 1st person 
singular  

I  

PP1AS  pronoun, personal, 
nominative, 1st person 

plural  

we wee  

PP1O  pronoun, personal, 
accusative, 1st person 

singular  

me  

PP1OS  pronoun, personal, 
accusative, 1st person plural  

us 's  

PP2  pronoun, personal, 
nominative or accusative, 

2nd person  

you ye thee thou y' ya tha yuh  

PP3  pronoun, personal, 
nominative or accusative, 

3rd person singular  

it 't  

PP3A  pronoun, personal, 
nominative, 3rd person 

singular  

he she 'e  

PP3AS  pronoun, personal, 
nominative, 3rd person 

plural  

they  

PP3O  pronoun, personal, 
accusative, 3rd person 

singular  

him her 'er 'im  

PP3OS  pronoun, personal, 
accusative, 3rd person 

plural  

them 'em  

PPL  pronoun, singular, reflexive  himself itself myself herself yourself oneself ourself thyself  
PPLS  pronoun, plural, reflexive  themselves ourselves each one yourselves one-another  
PPLS"  pronoun, plural, reflexive, 

ditto  
other another another's other's  

QL  qualifier, pre  too least most very as so more that less mighty real awfully 
stark this sound precious  

QLP  qualifier, post  enough indeed  
RB  adverb  forward still together violently once immediately bluntly 

clearly long obviously somewhere too truly seriously 
accurately profoundly rapidly superbly about ever entirely 

overseas ...  
RB"  adverb, ditto  and large right particular least course once little last short 

again than well general from full long so on common certain 
alia the less main facto first yet se brief but ...  

RB$  adverb, genitive  else's  



 

 65 

RBR  adverb, comparative  later longer earlier more less better faster worse sooner 
deeper higher harder closer nearer farther cheaper heavier 

lower poorer oftener slower louder quicker ...  
RBT  adverb, superlative  best most least fastest lowest worst nearest farthest closest 

longest furthest  
RI  preposition, adverbial, 

lacking compliment  
before within between above since after with near against 

alongside opposite but without below besides beyond 
beneath underneath like  

RN  adverb, nominal  now then here there downstairs upstairs indoors tho inland 
here-and-now down-town zen hyar downtown  

RP  adverb, particle  down up in through on off out apart about back over round 
away outside across around aboard inside aside by past 

behind under forth to oot  
TO  infinitival to  to so in  
TO"  infinitival to, ditto  as to order  
UH  interjection  yes please well \0O.K oh no aw goodbye ah gee whiz sure 

hey presto wham amen say why dear good-morning hurrah 
aye welcome boy oi bang er hi hullo goddammit ...  

VB  verb, base: uninflected 
present, imperitive or 

infinitive  

stop gather turn abolish put take appear prop favour drop 
meet discuss want fall give consult delay sit attend pass pay 

help try mention point say increase run know ...  
VB"  verb, base: uninflected 

present, imperitive or 
infinitive; ditto  

pedal stitch shop  

VBD  verb, past tense  opposed brought said telephoned went denied told remained 
added renewed arose wanted meant talked flew covered 

noted hoped thanked delivered supported felt noticed 
agreed ...  

VBG  verb, present participle or 
gerund  

replying addressing changing switching recommending 
hoping preserving provoking preventing wearing working 

winding accepting recalling ordering listening using ...  
VBN  verb, past participle  made put backed abolished created recommended 

transmitted jailed decided presented cancelled prepared 
discussed used posted regarded written indicated 

favoured ...  
VBZ  verb, present tense, 3rd 

person singular  
believes remains gives smears shocks cables says needs 
goes seems professes reports becomes publishes hopes 

attacks cracks feels regards claims suggests comes speaks 
outlines ...  

WDT  WH-determiner, 
interrogative  

what whatsoever whatever which whichsoever whichever 
vich  

WDT"  WH-determiner, 
interrogative, ditto  

ever  

WDTR  WH-determiner, relative  which  
WP  WH-pronoun, interrogative, 

nominative or accusative  
who whoever wot  

WP$  WH-pronoun, interrogative, 
genitive  

whose  

WP$R  WH-pronoun, relative, 
genitive  

whose  

WPA  WH-pronoun, nominative  whosoever  
WPO  WH-pronoun, interrogative, 

accusative  
whom-ever whom  

WPOR  WH-pronoun, relative, 
accusative  

whom  

WPR  WH-pronoun, relative, 
nominative or accusative  

who that  

WRB  WH-adverb  when wherever where how why however whenever wherein 
whereby whence whereof whereunto whereon  
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XNOT  negator  not n't na  
ZZ  letter of the alphabet  G-91 F B zh2014 A T-34 bf alp P A20 X D pi O F11309 a b 

Q M R4 x z q y H M1 J1 M2 J2 n S U c e d f ...  

Notes  

1. Formulas contain many symbols that were represented by special character 

sequences in the pre-formatting stage before the tagger was applied to the LOB 

corpus. This explains the strange appearance of these examples of formulas taken 

directly from the corpus.  

2. The LOB corpus tagger assumed that the input had been pre-formatted. Mostly the 

text was left as it would appear on a typed page but some characters where 

represented differently. Amongst these were the quote character and the dash 

character. The AMALGAM version of the LOB tagger will recognise and annotate 

these characters in their usual forms: ` ' " -  

3. Ditto tags were applied to words whose role changes from their normal syntax when 

applied in cerain combinations. The first word of the combination is tagged as normal 

and all subsequent words are given the first word's tag plus the ditto symbol ("). For 

example, the combination "so as to" is tagged TO TO" TO".  

4. Abbreviations in LOB were signalled by adding '\0' to the start of the abbreviated 

token. The AMALGAM version of the LOB tagger will handle abbreviations whether 

or not they have the '\0' prefix.  

5. The tag classes NRS$ and OD$ were designed by the LOB corpus developers but 

have no examples because there weren't any in the LOB corpus itself. NRS$ could 

be used to tag a word like Sundays' and OD$ the word third's.  
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Appendix D – Clustering output  

Cluster 1  
1  
2  
3  
4  
5  
10  
6  
b  
c  
others   
women  
CARD 63.64% 
  
Cluster 2  
a  
an  
any   
every   
our  
the  
almost  
ever  
i  
you  
per  
ART 36.36% 
  
Cluster 3  
able  
going  
ADJ 50% 
  
Cluster 4  
about  
at  
in  
on  
over  
than  
to  
above  
against  
under  
within  
across  
towards   
PREP 100% 
  
 
 
 
 
 
 
 
 

Cluster 5  
act  
age  
school  
war  
class  
section  
countries   
NOUN 100% 
  
Cluster 6  
added  
asked  
told  
came  
went   
PAST 100% 
  
Cluster 7  
after  
as  
for  
with  
without  
half  
death  
mind  
again  
here  
now  
then  
once  
everything  
ADV 35.71% 
  
Cluster 8  
ago  
however  
perhaps  
since  
while  
ADV 60% 
  
Cluster 9  
air  
world  
land  
case  
way   
cases  
NOUN 100% 
  
 
 
 
 
 

Cluster 10  
all  
another  
many   
one  
some  
such  
ten  
ART 42.86% 
  
Cluster 11  
alone  
away   
down  
off  
together  
along  
around  
round  
PREP 87.50% 
  
Cluster 12  
already   
also  
not   
still  
usually  
ADV 80% 
  
Cluster 13  
although  
if  
when  
whether  
whom  
SCON 60% 
  
Cluster 14  
always  
often  
probably  
sometimes 
ADV 100% 
  
Cluster 15  
am  
m  
ve  
PRES 66.67% 
  
Cluster 16  
american  
local  
modern  
political  
social  
ADJ 100% 
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Cluster 17  
among  
during  
near  
and  
or  
which  
outside  
PREP 57.14% 
  
Cluster 18  
anything  
me  
us  
PRON 100% 
  
Cluster 19  
are  
were  
became  
having  
making  
taking  
he  
she  
they  
we  
who  
PRES 36.36% 
  
Cluster 20  
area  
field  
period  
state  
meeting  
point   
stage  
NOUN 100% 
  
Cluster 21  
art   
life  
power  
business  
children  
men  
people  
things   
course  
NOUN 100% 
  
 
 
 
 
 
 
 

Cluster 22  
back  
out   
up  
open  
d  
said  
thought   
got   
just  
like  
s  
ADV 36.36% 
  
Cluster 23  
be  
been  
being  
less  
more  
no  
too  
re  
certainly  
therefore  
thus  
ADV 63.64% 
  
Cluster 24  
because  
until  
yes  
SCON 66.67% 
  
Cluster 25  
become  
get   
make  
take  
PRES 100% 
  
Cluster 26  
before  
but   
that  
though  
yet  
nor  
CCON 50% 
  
Cluster 27  
began  
want   
wanted  
PAST 66.67% 
  
 
 
 
 

Cluster 28  
behind  
by  
from  
into  
through  
upon  
heard  
read  
PREP 75% 
  
Cluster 29  
believe  
feel  
think  
PRES 100% 
  
Cluster 30  
best  
most  
total  
company   
family  
words   
effect  
problem  
question  
NOUN 77.78% 
  
Cluster 31  
better  
right   
even  
only  
rather  
gone  
four  
two  
six  
free  
love   
ADJ 27.27% 
  
Cluster 32  
between  
of  
where  
called  
left   
reached  
PAST 50% 
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Cluster 33  
black  
car  
church  
house  
town  
eyes  
face  
head  
voice  
NOUN 88.89% 
  
Cluster 34  
body   
name  
book   
word  
minister  
NOUN 100% 
  
Cluster 35  
both  
its  
their  
these  
this  
itself  
themselves 
DET 57.14% 
  
Cluster 36  
boy   
girl  
man  
morning  
NOUN 100% 
  
Cluster 37  
britain  
london  
order  
NOUN 100% 
  
Cluster 38  
british  
national  
other  
west  
city  
country   
future  
past  
NOUN 75% 
  
 
 
 
 
 
 

Cluster 39  
brought  
had  
has   
have  
is  
was   
due  
PAST 42.86% 
  
Cluster 40  
building  
labour  
service  
society  
trade  
common  
general  
public  
french  
white  
NOUN 90% 
  
Cluster 41  
can  
could  
might   
would  
it  
there  
MD 66.67% 
  
Cluster 42  
cent  
NOUN 100% 
  
Cluster 43  
century   
industry   
market   
NOUN 100% 
  
Cluster 44  
certain  
further  
good  
little  
very  
human  
real  
ADJ 71.43% 
  
Cluster 45  
change  
increase  
NOUN 100% 
  
 
 
 

Cluster 46  
child  
woman  
figure  
line  
position  
form  
use  
problems  
results  
NOUN 100% 
  
Cluster 47  
clear  
true  
close  
hard  
ADJ 100% 
  
Cluster 48  
come  
go  
help  
turn  
PRES 100% 
  
Cluster 49  
committee 
council  
government 
party  
development 
education  
food  
water  
law  
music  
NOUN 100% 
  
Cluster 50  
concerned 
particularly 
shown  
PAST 66.67% 
  
Cluster 51  
control  
experience 
policy  
later  
times  
today   
cut  
set  
play  
NOUN 88.89% 
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Cluster 52  
day   
night   
days  
years   
light  
paper  
table  
time  
year  
NOUN 100% 
  
Cluster 53  
de  
john  
whose  
NOUN 33.33% 
  
Cluster 54  
did  
does   
may  
must  
will  
MD 40% 
  
Cluster 55  
different   
high  
large  
long  
new  
old  
young  
full  
short   
ADJ 88.89% 
  
Cluster 56  
difficult  
necessary 
possible  
ADJ 100% 
  
Cluster 57  
do  
know  
say  
tell  
PRES 100% 
  
Cluster 58  
doing  
found  
taken  
done  
seen  
PAST 80% 
  
 

Cluster 59  
door  
room  
hand  
office  
side  
NOUN 100% 
  
Cluster 60  
doubt  
fact  
NOUN 100% 
  
Cluster 61  
dr  
miss  
mr  
sir  
mrs  
NOUN 100% 
  
Cluster 62  
each  
those  
several  
DET 66.67% 
  
Cluster 63  
early  
east  
south  
following  
united  
ADJ 60% 
  
Cluster 64  
either  
except  
forward  
given  
made  
used  
ADJ 66.67% 
  
Cluster 65  
end  
top  
NOUN 100% 
  
Cluster 66  
england  
god  
NOUN 100% 
  
 
 
 
 
 
 

Cluster 67  
english  
lord  
president   
hall  
road  
street  
NOUN 83.33% 
  
Cluster 68  
enough  
nothing  
something 
indeed  
PRON 50% 
  
Cluster 69  
example  
NOUN 100% 
  
Cluster 70  
far  
much  
so  
well  
soon  
mean  
ADV 83.33% 
  
Cluster 71  
father  
mother  
wife  
NOUN 100% 
  
Cluster 72  
feet  
hands  
own  
NOUN 66.67% 
  
Cluster 73  
felt  
saw  
PAST 100% 
  
Cluster 74  
few  
great  
small  
special  
moment   
ADJ 60% 
  
 
 
 
 
 
 



 

 71 

Cluster 75  
find  
see  
show  
look  
talk  
PRES 100% 
  
Cluster 76  
first  
last  
present  
next  
second  
five  
three  
ADV 42.86% 
  
Cluster 77  
gave  
took  
PAST 100% 
  
Cluster 78  
give   
keep  
leave  
let  
pay   
PRES 100% 
  
Cluster 79  
group  
system  
value  
NOUN 100% 
  
Cluster 80  
heart  
job  
story  
NOUN 100% 
  
Cluster 81  
held  
put   
kept  
turned  
PAST 100% 
  
Cluster 82  
her  
his  
my  
your  
herself  
him  
them  
himself  
PRON 100% 

Cluster 83  
home  
place  
work   
week   
least  
NOUN 80% 
  
Cluster 84  
hope  
knowledge 
view  
NOUN 100% 
  
Cluster 85  
hours  
months   
interest  
money   
living  
working  
NOUN 100% 
  
Cluster 86  
how  
what   
why   
sure  
WH 75% 
  
Cluster 87  
idea  
sense  
NOUN 100% 
  
Cluster 88  
important   
known  
need  
reason  
ADJ 50% 
  
Cluster 89  
kind  
type  
NOUN 100% 
  
Cluster 90  
knew  
says  
PAST 50% 
  
Cluster 91  
level  
rate  
matter  
result  
NOUN 100% 
  
 

Cluster 92  
ll  
shall  
should  
MD 100% 
  
Cluster 93  
looked  
stood  
looking  
PAST 66.67% 
  
Cluster 94  
main  
whole  
same  
ADJ 66.67% 
  
Cluster 95  
means   
members   
part   
terms  
NOUN 100% 
  
Cluster 96  
n't   
never  
quite  
really  
ADV 75% 
  
Cluster 97  
number  
NOUN 100% 
  
Cluster 98  
particular  
various   
ADJ 100% 
  
Cluster 99  
seem  
seemed  
seems  
PRES 66.67% 
  
Cluster 100 
thing  
NOUN 100% 

 
 


