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Abstract

In recent years there have been significant advances in the field of
Unsupervised Grammar Inference (UGI) for Natural Languages such as
English or Dutch. This paper presents a broad range of UGI implemen-
tations, where we can begin to see how the theory has been put in to
practise. Several mature systems are emerging, built using complex mod-
els and capable of deriving natural language grammatical phenomena.
The range of systems is classified into: models based on Categorial Gram-
mar (GraSp, CLL, EMILE); Memory Based Learning models (FAMBL,
RISE); Evolutionary computing models (ILM, LAgts); and string-pattern
searches (ABL, GB). An objectively measurable statistical comparison of
performance Of the systems reviewed is not yet feasible. However, their
merits and shortfalls are discussed, as well as a look at what the future
has in store for UGL.

1 Introduction

Gold’s seminal paper (Gold, 1967) showed that it was theoretically impossi-
ble to extract a definitive grammar from examples of a target language, unless
selected negative counterexamples were also available. Encouragingly, this the-
oretical hurdle has not deterred research: the natural language learning (NLL)
community has witnessed rapid advances in unsupervised grammar inference.

Interesting developments have arisen from the psychological perspective of
this task: research has been driven to devise psychologically plausible models
of natural language acquisition.

Grammar inference is not just restricted to its classical domain of syntactic
pattern recognition, with many useful functions within other levels of Natural
Language Processing, such as speech processing. It has expanded in to other
important areas, for example, information retrieval (Freltag, 1997; Hong and
Clark, 2001) and gene analysis (Dong and Searls, 1994).

This paper focuses on recent UGI implementations. Some are pitched as
UGI systems in their own right, others could be classed as solutions to sub-
tasks that would be useful to language learning systems. It is worth noting
that this is not a comprehensive review of every such system, but more of a
snapshot of some of the interesting avenues of research being explored. Highly
supervised systems, regardless of their performance, have not been included,
nor have visualisation techniques that make it easier for human experts to dis-
cover grammar structure from text (Belkin and Goldsmith, 2002; Elliott et al,
2001). We also exclude systems which only infer word-classifications without
attempting to learn structure, such as (Atwell, 1983; Hughes and Atwell, 1994;
Roberts, 2002).

2 Categorial Grammar

A categorial grammar is a simply a grammar rather than a learning paradigm.
However, CG clearly lends itself to unsupervised learning as it has been adopted
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Figure 1: A simple sentence parsed in CG

as the foundation for many systems. One of the main reasons for this that
the lexicon and the grammar are acquired in the same task; the psychology
literature (Bates and Goodman, 1997) suggests that the two are not separate
mental processes. This is a bonus for those researchers striving to produce a
realistic psychological model of human language acquisition, and also for those
who wish to implement simpler and more efficient algorithms for what is still a
complex task.

CGs were first proposed by Ajdukiewicz (1935) and have since matured and
modified. Steedman’s generalised version (Steedman, 1989) serves well for a
brief overview. A CG comprises of two components. Firstly, the categorial
lezicon is essentially a dictionary which associates each word within the lexicon
a syntactic and semantic category. Secondly, the combinatory rules provide the
functional application of the grammar, and allow more complex categories to
be created from the simpler ones.

S/b —a
S\a —b

These operators provide the freedom to transform rules, allowing you to
isolate and manipulate parts that would otherwise be inaccessible (Adriaans,
1999). Fig. 1, taken from Steedman (1989), illustrates how a simple sentence is
parsed.

2.1 GraSp

GraSp (Henrichsen, 2002) is a learning algorithm designed specifically for induc-
ing grammars from large, unlabelled corpora. Its long term goal is to provide
insight to the innateness debate. In this instance, the hypothesis is that there
is no such linguistic innateness.

Henrichsen used a variant of the Gentzen-Lambek categorial grammar, which
was enhanced with non-classical rules for isolating a residue of uninterpretable
sequent elements. Empty categories are also permitted in this version which
are not normally allowed in CG due to the principle of adjacency: combinatory
rules may only apply to entities which are linguistically realised and adjacent
(Steedman, 1989).

The learning algorithm begins by assigning each word type with its own
unique category. The learning process applies changes in the lexicon by adding,
removing and manipulating the basic categories using the CG operators (/,



\ or *). The changes are guided by a measure of disorder. Dis(X) returns
the number of uninterpretable atoms in the sequent Y. The update process is
iterative. GraSp monitors the measure of disorder before applying each update,
and the process will halt as when the update no longer improves the disorder of
the lexicon.

No quantifiable measurements of GraSp’s accuracy were published. There-
fore, commenting on its performance is obviously difficult. Whilst rigorous
evaluation may not have taken place, GraSp clearly has many merits in that it
does succeed in learning linguistic features from unlabelled corpora. Henrichsen
describes the output being rich in “microparadigms and microstructure”, which
inter-connect to form a complex grammar.

2.2 CLL

CLL (Watkinson and Manandhar, 2001) is not only concerned with developing
a computationally feasible language learner, but one that is also psychologi-
cally plausible too. Therefore, the algorithm used by CLL was designed to also
make way for a model of human language learning facilities, as well as being a
computational learning tool.

CLL is trying to emulate a child with respect to its acquisition of its first
language. The psychology influence in the research refers mainly to the envi-
ronment in which the learner learns. This deals with the type of language a
child is likely to encounter and the effect of language teaching. The conclusion
reached: “Hence, we have a learner that is unsupervised, positive only and does
not have a teacher.” Unfortunately, the algorithm was arguably built with too
much ‘innateness’, which reduces its credibility as an unsupervised process. The
provision of a complete set of lexical categories was quite justly acknowledged
by the authors as being “too strong a bias to be psychologically plausible”. Ad-
ditionally, the algorithm is given a set of closed-class words (with categories) at
the start of the learning process. Two different sizes of the initial lexicon were
tried, 31 and 348.

The learning algorithm functions by taking an example sentence from a
corpus, which is then parsed using a n-best probabilistic chart parser (developed
from a standard stochastic CKY algorithm). This can result in a number of
possible parses, of which it is then up to the parse selector to decide which one
would benefit the lexicon the most. The metric which decides the ‘goodness’
of a parse is based on which creates the most compressive lexicon. To do this,
it must also evaluate the effect of the newly modified lexicon by reparsing any
examples that may be affected. Whilst it appears to be a costly approach, it
does ensure the most compressive lexicon.

Watkinson and Manandbar created a relatively robust approach to evalu-
ating their results (Watkinson and Manandhar, 2001). As the Penn Treebank
corpus was the source of the text to learn, its annotation was translated into
CG annotation, so that it could be compared with the output of the learning
algorithm. Whilst the newly annotated corpus was considered a gold standard,
it was converted automatically, and therefore liable to error. The best perfor-



mance attained by CLL was 51.9% accuracy (this is with an initial 348 word
lexicon). While this performance is still relatively low, considering the difficulty
of the problem, and using a complex corpus, to perform above 50% is still a
recognisable achievement.

2.3 EMILE

EMILE (Adriaans, 1992, 1999) has been around for some time now. It will
continue to be with us because it is a well executed algorithm and performs well
and efficiently. EMILE has been updated through the years, and is currently at
version 4.1 — although this latest version has been implemented by Vervoort
(2000).

For EMILE to be in this section, it clearly relies on a categorial grammar. A
given input set of example sentences is converted into a CG of basic categories.
After applying first order explosion, each sentence is examined to discover how
it can be broken up into subexpressions (using the standard CG operators).
The resulting set of subexpressions is passed to an oracle. The reason for this is
because EMILE uses a teacher/child metaphor. Therefore, the system can ask
the oracle which ones are valid.

Any subexpressions that can be substituted into the same contexts, and still
be valid are said to be of the same type. Therefore, the next step employed
is to cluster to rules passed by the oracle and cluster them into types. The
final phase is rule induction. The clustering has resulted in a variety of basic
and complex rules, however, they tend to relate to specific types. Thus the
rule induction step generalises them to general types, with the outcome being a
shallow context-free grammar.

EMILE tends to produce accurate results due to the fact that it waits for
enough evidence to be found before constructing grammar rules. However, ac-
cording to Adriaans’ calculations, in order for his system to acquire a language
with 50,000 words, it would need learn from a sample of 5 million sentences.
Assuming an average of 15 words per sentence, then a 75 million word corpus is
required. My initial thoughts was that figure was too large. However, it is quite
reasonable considering EMILE is generating a grammar to cope with 50,000
words considering the complexity of the task. It does mean that EMILE is a
slow learner (compared to some other systems, such as ABL), as was concluded
in van Zaanen and Adriaans (2001). Experiments conducted on the ATIS corpus
produced precision of 51.6%.

3 Memory Based Learning (MBL)

The MBL paradigm attempts to discover ways in which you can abstract in-
formation from a given data set, whilst maintaining accuracy. The hope is to
develop methods that perform at least equal to pure MBL (where all information
is retained).
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Figure 2: Example of family creation in FAMBL taken from Van den Bosch
(1999). This shows instances of grapheme-phoneme occurrences being merged
into a single family expression.

Pure MBL tends to give the best performance in analysis of unseen data,
due to the very fact that it never forgets any training examples. An advantage
of computerised systems is that it is often feasible to keep every instance -
memory limits are seemingly infinite. So, why bother with MBL? Abstraction
should result is smaller and more efficient learning models. After all, humans
do not have a capacity for pure MBL, therefore, MBL should offer a more
psychologically plausible approach too.

3.1 FAMBL (Family Based Learning)

Classification systems that are equipped with a forgetting facility, use it to not
only perform more efficiently, but to avoid over-fitting, which can be detrimental
to accuracy. However, default parameters for this process often generalise too
much for learning tasks which produces poor performance (Van den Bosch,
1999).

Therefore, the key is to use careful (or weak) abstraction, whereby instances
can be abstracted without doing harm (e.g., forgetting exceptions would be
careless (Daelemans et al, 1999)). The way in which FAMBL achieves this is
to transform the instance base into instance families. A family is a cluster that
has been classified using k-NN (Nearest Neighbour). The instances surround a
given instance are its family. Fig. 2 gives an example of how the instances are
then merged into hyper-rectangles that define a family expression.

The FAMBL algorithm randomly selects instances individually, that are not
a member of a family. For each one found, its family is determined and a family
expression is created from those instances. It continues to generate families until
the instance base doesn’t contain any instances that do not belong to a family.

FAMBL has not yet been used as a full-scale grammar induction system. It
has, however, been applied successfully to a variety of relevant tasks in language



learning, including morphological segmentation, base-NP chunking, PP attach-
ment, and POS tagging. For example, the experimentation with POS resulted
in an accuracy of 97.87%, and family-abstraction yielded a reduction of 75%
memory compared to pure-MBL.

3.2 RISE (Rule Induction from a Set of Exemplars)

RISE (Domingos, 1995) is a multi-strategy approach, which comprises of MBL
and rule induction. Rules begin as being instance specific. It then begins to
generalise by looking at each rule and searching for other instances that fall
within the same class. Any instances that satisfy this are merged and their
rules are generalised.

In order to ensure the rules deduced are productive, RISE estimates the
‘goodness’ by computing its apparent accuracy using its class prediction strength
with Laplace correction. Performance is constantly monitored by the algorithm
and generalisation ceases if the apparent accuracy worsens.

4 Artificial Life: Evolutionary Optimisation

Nature has allowed humans to acquire the abilities to learn, understand and
communicate using language by process of evolution. With that precedent, it
should therefore by possible for us to apply similar techniques to create Language
Acquisition Devices: LADs. Of course, its feasibility is the matter of debate.

LADs are already complicated, but adding an extra discipline of modelling
evolution brings a new dimension of difficulty. The payoff is that once the system
is setup, natural selection will take over and allow optimal language learning
conditions to emerge.

4.1 TIterated Learning Model (ILM)

The idea behind Kirby’s work is to take away the emphasis of biological evolution
and he believes too much importance has been placed upon it. The alternative
is to treat languages as adaptively evolving systems (Kirby, 2002).

If language is like an organism in its own right, then you begin to see that
it has its own set of selected pressures. Humans are its host, and its method
of transmission is via human communication. A successful language is one that
can be learnt, understood and used, for the benefit of its hosts.

Therefore, Kirby and Hurford (2002) suggests that language is not only
subject to biological natural selection, but is the result of three complex adaptive
systems, as he illustrated in fig. 3:

“There clearly are interactions: for example, biological evolution
provides the platform on which learning takes place, what can be
learnt influences the languages that can persist through cultural
evolution, and the structure of the language of a community will



influence the selection pressures on the evolving language users.”
(ibid)

Evolution provides prior
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Figure 3: Interactions of the three adaptive systems.
ILM is composed of four elements:

1. A meaning space
2. A signal space
3. One or more language-learning agents

4. One or more language-using adult agents

The adult agent as a set of meanings for which is must convert into signals
to then be transmitted to the learner (both agents have been initialised with
random parameters). The speaker makes an assumption that the hearers signal-
to-meaning mapping will be approximately that of the speakers. Therefore,
the principle behind transmission is the generate signals that maximise the
confidence of the given meaning. Once the speaker has finished, it is then
redundant, and the learner is promoted. A new learner is added and the cycle
continues.

This is a somewhat simplified version of events, but the overall result is after
a few hundred generations — after much randomness — meaningful structure
emerges.

Kirby’s research on the whole is looking at linguistic evolution rather than
creating a tool for grammar inference (although one does lead to the other).
And as such, there are no large scale runs of using the ILM to acquire grammar
from a large corpus, and to evaluate it in any way. However, its inclusion is still
relevant because it is an interesting approach - one that could be adapted to
evolve grammar inference devices.



4.2 Language Agents (LAgts)

Language agents (LAgts) are born from the research carried out by Briscoe
(2000). An equally intriguing approach to grammar induction through the
application of alife, populations of LAgts are simulated. LAgts are language
learners, generators and parsers.

Each LAgt adopts a Categorial Grammar as its underlying framework, albeit
an extended version known as Generalized Categorial Grammar (GCG), (Wood,
1993). They are used to provide a relationship between the LAgt’s universal
grammar and the specification of a given grammar; Briscoe is clear which side
of the ’innateness’ fence he stands on, which is why LAgts possess a universal
grammar. They are embedded in a default inheritance network, and are repre-
sented as a sequence of p-settings. Each setting can be encoded as True, False or
2 (which indicates that it is yet to be specified). They are partially ordered too,
which means atomic categories can be in an arbitrary position, although more
complex types, where directionality is significant, then ordering must be pre-
served within that type. There is also a distinction between Absolute, Default
and Unset parameters.

Simulations are run to model the evolving population of LAgts. A successful
interaction is generally one where a random agent generates a sentence based on
its current grammar, which can be parsed by another randomly selected agent.
Such a pair are said to have compatible p-settings. Fach LAgt has a set lifespan
of 10 interaction cycles. Between the ages of 4-10, an agent can reproduce new
agents, and from aged 5 onwards, an agent stops learning and its grammar is
therefore fixed. Agents older than 10 are removed from the simulation.

During their learning phase, it is possible for LAgts to alter any of their
parameters that were given Default of Unset attributes from their conception.
There is a cost associated with an update, which is why successful agents tend
to changed by one point of their initial p-settings. This results in the classical
strategy of inheritance where parents pass on their genes and not any acquired
characteristics.

Once again, performance related information about the LAgts’ actual abil-
ities to acquire grammar accurately is difficult to extract. Much of Briscoe’s
work has been to experiment with the seemingly unlimited number of factors
that affect evolving systems (coevolution, migration, acquisition effectiveness
etc). However, languages did emerge from the learners that were described as
‘full language’: that is, ‘close to an attested language’. Ideally, Briscoe would
have elaborated as to just how ‘close’ this is. There were seven full languages
available for experimentation. A language is given to one or more adult LAgts
(depending on the simulation) who then communicate with the learners, and so
on.



5 String Pattern Searches

Some systems do not fit conveniently into the above groups, and illustrate the
greater breadth of approaches to UGI.

5.1 ABL (Alignment Based Learning)

ABL (van Zaanen, 2002) is a learning paradigm in its own right. It is based
on the principle of substitutability, whereby two constituents are of the same
type, then they could be substituted. Of course, the system is unsupervised,
and therefore, does not know types. Thus, the principle is reversed so that if
two constituents can be substituted, they are of the same type. Fig. 4 shows
an example from van Zaanen and Adriaans (2001) of two segments from two
sentences are declared as being of the same type.

What is a family fare

What is the payload of an African Swallow
What is (a family fare)z

What is (the payload of an African Swallow)z

Figure 4: Example of bootstrapping structure in ABL

Much complexity is added due to alignment learning phase finding con-
stituents that overlap each other. This problem is overcome using a selection
learning phase. This is where the ABL algorithm determines the correct (or at
least the best fit) constituent using probabilistic methods. Selection is decided
upon calculating the probability of the words in the overlapping constituent and
its type. A Verberti-style algorithm is also used to search through all possible
combinations of overlapping constituents and select the best one. ABL performs
well. The computational demands of its algorithm mean that it is not suitable
for large corpora (>100K sentences). However, its greedy nature means it will
learn quickly. An accuracy of 62% was recorded when ABL was given the OVIS
corpus to process. Versions of the ABL system have also been tested with the
Penn Treebank and ATIS corpora.

5.2 GB (Grammatical Bigrams)

GB or Grammatical Bigrams were proposed by Paskin (Paskin, 2001), in the
hope of creating a simple language learning model, and therefore, making the
actual learning process tractable. Independence assumptions are introduced to
reduce complexity, although at the same time it increases the model’s bias.
The Grammatical Bigram model uses the Dependency Grammar formalism
to describe the relationship between pairs of words. One word in this link is
the head, and the other is its dependent. A dependency parse is a directed
graph, consisting of a set of such relationships. No word can be dependent on
more than one head (the root of a sentence has no dependency). Also, a word



cannot be dependent on itself, making the links acyclic. If the dependents of a
head word are completely independent of each other, and their order, then this
independence assumption results in a much simpler model of grammar and so
the parser is spared of that complexity.

The parser is used to learn grammar from labelled corpora. However, for
unsupervised learning, the EM algorithm is used to learn the optimal parameters
(probabilities of dependency for a given head). Other statistics are computed
using an adapted version of the Inside-Outside algorithm that works in O(n?)
time.

Unfortunately, Grammatical Bigrams are suited more to the generalisation of
labelled data than to unsupervised induction. When given an unlabelled corpus
of Wall Street Journal articles, and its output evaluated against the annotated
Wall Street Journal section of the Penn Treebank, GB yielded an accuracy of
only 39.7%. Clearly, the compromise in making the model computationally
efficient results in a grammar model that is still too approximate to represent
the sorts of structures it sees in the input corpus.

6 Discussion

This review has attempted to analyse the range of underlying algorithms used
by various approaches:

1. GraSp (Henrichsen, 2002): minimising “disorder” in CG lexicon;

2. CLL (Watkinson and Manandhar, 2001) : stochastic CKY parser optimi-
sation from a given lexicon;

3. EMILE (Adriaans, 1999): rule induction from candidates, guided by “or-
acle”;

4. FAMBL (Daelemans et al, 1999): weak abstraction of common subexpres-
sions into “families”;

5. RISE (Domingos, 1995): Memory Based Learning or patterns, with rule
induction;

6. ILM (Kirby and Hurford, 2002): evolutionary optimisation of a language-
space;

7. LAgts (Briscoe, 2000): evolutionary optimisation of language-acquisition
software agents;

8. ABL (van Zaanen, 2002): rule induction from substitutable subexpres-
sions;

9. GB (Paskin, 2001): stochastic optimisation of dependency-pair sets.
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A review ought to include a comparative evaluation of the alternative ap-
proaches and systems; but we could find few objective metrics or evaluative
features reported across the source literature. Most researchers appeal to a lin-
guist’s “looks good to me” evaluation (Hughes and Atwell, 1994), (Jurafsky and
Martin, 2000): they demonstrate that their systems can infer some examples of
grammatical constructs which seem similar those found in linguists’ grammars.
Unfortunately, this is a subjective qualitative assessment, and does not yield a
percentage score which can be compared.

Early research on unsupervised word-class inference, clustering words into
classes e.g. (Atwell, 1983; Atwell and Drakos, 1987; Finch, 1993) also appealed
to “looks good to me” evaluation; but more recent research has tried to mea-
sure inferred word-classes against a human-tagged corpus (Hughes and Atwell,
1994; Roberts, 2002). Other areas of Language Engineering also try to evaluate
rival systems against a “Gold Standard” human-annotated corpus; so why not
Unsupervised Grammar Inference? Only four of the projects surveyed report
accuracy measured against a human-parsed corpus:

1. CCL (Watkinson and Manandhar, 2001): 51.9% on Penn Treebank;
2. Grammatical Bigrams (Paskin, 2001): 39.7% on Penn Treebank;
3. EMILE (Adriaans, 1992; Vervoort, 2000): 51.6% on ATIS Corpus;

4. ABL (van Zaanen, 2002): 62% on OVIS corpus (lower with Penn and
ATIS).

Even these percentage scores cannot be compared meaningfully as they are
based on different alignment-measures, and used different corpora and human
parsing schemes. Parsing schemes used in human-annotated treebanks can cap-
ture a variety of grammatical information, including some or all of the following
(Leech et al, 1996): (a) Bracketing of segments; (b) Labelling of segments; (c)
Showing dependency relations; (d) Indicating functional labels; (e) Marking
sub-classification of syntactic segments; (f) Deep or ‘logical’ information; (g)
Information about the rank of a syntactic unit; (h) Special syntactic character-
istics of spoken language. In their review of corpus parsing schemes, Atwell et
al (2000) conclude:

“unlike the tagging schemes, it does not make sense to make an
application-independent comparative evaluation. No single standard
can be applied to all parsing projects. Even the presumed lowest
common denominator, bracketing, is rejected by some corpus lin-
guists and dependency grammarians. The guiding factor in what is
included in a parsing scheme appears to be the author’s theoretical
persuasion or the application they have in mind.”

So, an objective measure of alignment against a human-parsed “gold stan-
dard” Treebank may not be feasible or even desirable. In fact, one intrigu-
ing potential of Unsupervised Grammar Inference is that it may yield analyses
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which fit the data better than traditional grammarians’ parse-categories; but
if we measure against an established Treebank, any such innovation will be
penalised. Unsupervised Grammar Inference has potential applications with
unknown languages e.g. (Atwell and Elliott, 2001), for which a high score in
learning English grammar may be inappropriate.

An alternative possible metric which suggests itself is “how much has been
learnt”: some measure of the difference between size or scale of the initial as-
sumption or “learning bias” (Jurafsky and Martin, 2000) and the final grammar
which has been inferred. For example, Watkinson and Manandhar (2001) con-
trasted CCL experiments with initial lexicons of 31 and 348 words, and found
that the latter yielded a larger grammar. Unfortunately, other sources did not
report comparable “starting assumption” and “final grammar” metrics.

7 Future of Grammar Inference

The next big step within the UGI community is to design and develop a ro-
bust evaluation procedure. Many of the systems featured in this paper did not
publish performance results of their experiments, favouring a ‘looks good to me’
approach. This is certainly not an attempt to say expert linguistic evaluation
is somehow inferior to an automatic, computerised approach. However, it is
rather subjective, and if carried out by the author of the UGI system, likely to
be partial to some bias.

An automatic evaluation tool — if designed correctly — would allow con-
sistent comparison between rival systems. To be able to quantify performance
would allow GI designers and developers to ensure that future updates actually
provide greater accuracy, and quickly, so that research is not led down a dead
end if the results of a system looked good, but performance was in fact degrad-
ing. However, it is clearly fraught with difficulties, which is the likely reason
why many have steered clear.

With respect to UGI itself, we can look forward to great advances in the
long term. The computational complexity of the algorithms will become less of
a burden with optimisation and increased computational resources. We also look
forward to wider applications on different datasets, as Unsupervised Grammar
Inference is more widely recognised as a powerful data-mining technique.
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